5 resultados para Sparse representation
em Cochin University of Science
Resumo:
The standard separable two dimensional wavelet transform has achieved a great success in image denoising applications due to its sparse representation of images. However it fails to capture efficiently the anisotropic geometric structures like edges and contours in images as they intersect too many wavelet basis functions and lead to a non-sparse representation. In this paper a novel de-noising scheme based on multi directional and anisotropic wavelet transform called directionlet is presented. The image denoising in wavelet domain has been extended to the directionlet domain to make the image features to concentrate on fewer coefficients so that more effective thresholding is possible. The image is first segmented and the dominant direction of each segment is identified to make a directional map. Then according to the directional map, the directionlet transform is taken along the dominant direction of the selected segment. The decomposed images with directional energy are used for scale dependent subband adaptive optimal threshold computation based on SURE risk. This threshold is then applied to the sub-bands except the LLL subband. The threshold corrected sub-bands with the unprocessed first sub-band (LLL) are given as input to the inverse directionlet algorithm for getting the de-noised image. Experimental results show that the proposed method outperforms the standard wavelet-based denoising methods in terms of numeric and visual quality
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Resumo:
DNA sequence representation methods are used to denote a gene structure effectively and help in similarities/dissimilarities analysis of coding sequences. Many different kinds of representations have been proposed in the literature. They can be broadly classified into Numerical, Graphical, Geometrical and Hybrid representation methods. DNA structure and function analysis are made easy with graphical and geometrical representation methods since it gives visual representation of a DNA structure. In numerical method, numerical values are assigned to a sequence and digital signal processing methods are used to analyze the sequence. Hybrid approaches are also reported in the literature to analyze DNA sequences. This paper reviews the latest developments in DNA Sequence representation methods. We also present a taxonomy of various methods. A comparison of these methods where ever possible is also done