3 resultados para Solution chemistry

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Setschenow parameter and thermodynamic parameters of transfer of 2-, 3- and 4-fluorobenzoic acid from water to salt solution are reported. The data have been rationalized by considering the structure breaking effects of the ions of the salts, the localized hydrolysis model and the internal pressure theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly crystalline, ultra fine TiO (anatase) having high surface area has been prepared by thermal hydrolysis of titanyl sulphate 2 solution and characterized using B.E.T surface area measurements, XRD and chemical analysis. The dependence of surface area on concentration of staffing solution, temperature of hydrolysis, duration of boiling and calcination temperature were also studied. As the boiling temperature, duration of boiling and calcination temperature increased, the surface area of TiO formed decreased significantly. 2 On increasing calcination temperature, the crystallite size of TiO also increased and gradually the phase transformation to rutile took 2 place. The onset and completion temperatures of rutilation were 700 and 10008C, respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the procedures reported for the synthesis of metal nanoparticles involve the use of strong reducing agents or elevated temperatures. This limits the possibility of developing metal nanoparticle based sensors for the in situ detection of analytes. One of the objectives of the present investigations is to (i) develop newer methodologies for the synthesis of metal nanoparticles in aqueous medium at ambient conditions and (ii) their use in the detection of metal cations by taking advantage of the unique coordination ability. Ideally, biocompatible molecules which possess both the reducing and stabilizing groups are desirable for such applications. Formation of stable supramolecular assembly, by bringing metal nanoparticles close to each other, results in plasmon coupling and this strategy can be effectively utilized for the development of metal nanoparticle based sensors.Another objective of the present study is to understand the supramolecular organization of molecules on surfaces. Various noncovalent interactions between the molecules and with surface play a decisive role in their organizations. An in-depth understanding of these interactions is essential for device fabrications. Recent photophysical studies have revealed that phenyleneethynylene based molecular systems are ideal for device application. The second objective of the thesis focuses on understanding the (i) organization of phenyleneethynylenes on highly oriented pyrolytic graphite (HOPG) surface with atomic level precision and (ii) weak intermolecular interactions which drive their organization.