8 resultados para Solomon, Alisa

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic dielectrics with high dielectric constant in the microwave frequency range are used as filters, oscillators [I], etc. in microwave integrated circuits (MICs) particularly in modern communication systems like cellular telephones and satellite communications. Such ceramics, known as 'dielectric resonators (DRs),donot only offer miniaturisation and reduce the weight of the microwave components. but also improve the efficiency of MICs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric resonator ceramics with composition formula Ba[(D3+0.3 Bi0.2)Nb0.5]O3,where D3+=Y,Pr,Sm,Gd,Dy and Er,were prepared by the conventional ceramic preparation route

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic dielectric resonators in the BaO-RE2O3-TiO2 (RE = rare earth) system have been prepared by the conventional solid state ceramic route. The dielectric properties have been tailored by substitution of different rare earth oxides and by bismuth oxide addition. The dielectric constants increased with Bi addition whereas the 0 decreased. The temperature coefficient of the resonant frequency improved with bismuth addition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microwave ceramic dielectric resonators (DRs) based on RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) have been prepared using the conventional solid -state ceramic route. The DR samples are characterized using XRD and SEM methods. The microwave dielectric properties are measured using resonant methods and a net work analyzer . The ceramics based on Ce, Pr, Nd, and Sin have dielectric constants in the range 32-54 and positive coefficient of thermal variation of resonant frequency (r,). The ceramics based on Gd, Tb, Dy, Y. and Yb have dielectric constants in the range 19-22 and negative Tf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric ceramics based on solid solution phases of [RE1_x= REr]TiNb06, where REI_s = Nd, Pr, Sm and RE' = Dy, Gd and Y, were prepared by the conventional solid-state ceramic route for values of x. The ceramic samples are characterized by X-ray diffraction and microwave methods. Ceramics based on RE (Pr, Nd and Sm) belonging to aeschynite group shows positive value of Tf and those based on RE (Gd, Dy and Y) belonging to euxenite group show negative value of r f. The solid solution phases between the aeschynite and the euxenite group shows intermediate dielectric constant and r f values. The results indicate the possibility of tailoring the dielectric properties by varying the composition of the solid solution phases. The range of solid solubility of euxenite in aeschenite and aeschenite in euxenite are different for different rare earth ions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microwave dielectric ceramics based on RETiTaO6 (RE = La, Cc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) were prepared using a conventional solid-state ceramic route. The structure and microstructure of the samples were analyzed using x-ray diffraction and scanning electron microscopy techniques. The sintered samples were characterized in the microwave frequency region. The ceramics based on Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, which crystallize in orthorhombic aeschynite structure, had a relatively high dielectric constant and positive T f while those based on Ho, Er, and Yb, with orthorhombic euxenite structure, had a low dielectric constant and negative Tf. The RETiTaO6 ceramics had a high-quality factor. The dielectric constant and unit cell volume of the ceramics increased with an increase in ionic radius of the rare-earth ions, but density decreased with it. The value of Tf increased with an increase in RE ionic radii, and a change in the sign of Tf occurred when the ionic radius was between 0.90 and 0.92 A. The results indicated that the boundary of the aeschynite to euxenite morphotropic phase change lay between DyTiTaO6 and HoTiTaO6. Low-loss ceramics like ErTiTaO6 (Er = 20.6, Qxf = 85,500), EuTiTaO6 (Er = 41.3, Qxf = 59,500), and YTiTaO6 (Er = 22.1, Q„xf = 51,400) are potential candidates for dielectric resonator applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rubber ferrite composites (RFC) are magnetic polymer composites and have a variety of applications as flexible magnets, pressure=photo sensors, and microwave absorbers. The mouldability into complex shapes is one of the advantages of these magnetic elastomers. They have the potential of replacing the conventional ceramic materials, due to theire flexible nature. In the present study, the incorporation of pre-characterized hexagonal ferrites, namely barium ferrite (BaFe12O19), into natural rubber matrix is carried out according to a suitable recipe for various loadings of the filler. The processability of these compounds was determined by evaluating the cure characteristics: scorch time, cure time, and minimum and maximum torque. It has been found that the addition of magnetic fillers does not affect the processability of the composites, whereas the physical properties are modified. The magnetic properties of these composites containing various loadings of the magnetic filler were also investigated. The magnetic properties of RFC can be controlled by the addition of appropriate amount of the ferrite filler.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activities of SOMB got off to an impactful start with ‘Shramdhan’ programme on world Environment Day. SOMB members actively participated in a campus cleaning drive at Lakeside Campus. Members also organised a tree planting programme on this day and planted few fruit trees at the marine sciences campus. We also had couple of high profile faculty members delivering lectures to SOMB community. This included Dr. Pattanathu Rahman, Sr. Lecturer and Programme Leader of Chemical and Bioprocess Engineering Group at Teeside University, UK; Dr. Dr.Velerie Vasilakov, Vladivostok State University, Russia; Dr. Sunil Kumar George, Research Scientist, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA and Prof. Kalliathe Padmanabhan, Department of Biochemistry, Michigan State University, USA.