6 resultados para Solitons Monopoles and Instantons
em Cochin University of Science
Resumo:
In 1931 Dirac studied the motion of an electron in the field of a magnetic monopole and found that the quantization of electric charge can be explained by postulating the mere existence of a magnetic monopole. Since 1974 there has been a resurgence of interest in magnetic monopole due to the work of ‘t’ Hooft and Polyakov who independently observed that monopoles can exist as finite energy topologically stable solutions to certain spontaneously broken gauge theories. The thesis, “Studies on Magnetic Monopole Solutions of Non-abelian Gauge Theories and Related Problems”, reports a systematic investigation of classical solutions of non-abelian gauge theories with special emphasis on magnetic monopoles and dyons which possess both electric and magnetic charges. The formation of bound states of a dyon with fermions and bosons is also studied in detail. The thesis opens with an account of a new derivation of a relationship between the magnetic charge of a dyon and the topology of the gauge fields associated with it. Although this formula has been reported earlier in the literature, the present method has two distinct advantages. In the first place, it does not depend either on the mechanism of symmetry breaking or on the nature of the residual symmetry group. Secondly, the results can be generalized to finite temperature monopoles.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure.
Resumo:
The dynamics of saturated two-dimensional superfluid4He films is shown to be governed by the Kadomtsev-Petviashvili equation with negative dispersion. It is established that the phenomena of soliton resonance could be observed in such films. Under the lowest order nonlinearity, such resonance would happen only if two dimensional effects are taken into account. The amplitude and velocity of the resonant soliton are obtained.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Large amplitude local density fluctuations in a thin superfluid He film is considered. It is shown that these large amplitude fluctuations travel and behave like "quasi-solitons" under collision, even when the full nonlinearity arising from the Van der Waals potential is taken into account.