46 resultados para Soil solution electrical conductivity
em Cochin University of Science
Resumo:
The electrical conductivity and thermal diffusivity of pristine and iodine doped vanadyl naphthalocyanine (VONc) were studied. In the pristine sample, the temperature dependence was very weak below 300 K. The increase in conductivity at higher temperature must be due to an enhancement in carrier density with increase in thermal energy. The electrical conductivity of VONc increased when doped with iodine. The behavior of VONcI indicated that considerable changes have occurred in the electronic environment of the molecule as a result of doping. Iodine doping enhanced the thermal diffusivity of VONc. The increase in thermal diffusivity of the iodine doped sample may be due to the disorder of iodine atoms occupying the channels in one dimensional lattices.
Resumo:
Four distinct peaks are observed at 140, -26, -132 and -140°C in the sigma x* against T-1 plot between 200 and - 196°C for (NH4)3H(SO4)2, corresponding to four different phase transitions of which the one at -26°C is reported here for the first time. Data on doped samples reveal the charge transport mechanism in the crystal.
Resumo:
DC and AC electrical conductivity measurements in single crystals of diammonium hydrogen phosphate along the c axis show anomalous variations at 174, 246 and 416 K. The low-frequency dielectric constant also exhibits peaks exactly at these temperatures with a thermal hysteresis of 13 degrees C for the peak at 416 K. These specific features of the electrical properties are in agreement with earlier NMR second-moment data and can be identified with three distinct phase transitions that occur in the crystal. The electrical conductivity values have been found to increase linearly with impurity concentration in specimens doped with a specific amount of SO42- ions. The mechanisms of the phase transition and of the electrical conduction process are discussed in detail.
Resumo:
Anomalous variations of d.c. electrical conductivity with temperature are observed in ammonium sulphate single crystals, suggesting a possible phase transition at 150°C. Measurements of thermally stimulated current also support these results. The mechanism of electrical conduction is explained on the basis of studies made on doped and quenched crystals.
Resumo:
Measurements of dc conductivity and dielectric constant show that deuteration causes an upward shift of the high temperature phase transition point from 186.5 to 191°C and a downward shift of the low temperature transition point from 10 to -1.5°C in LiNH4SO4. Mechanisms of phase transitions and of electrical transport in the crystal are discussed.
Resumo:
D.C. and a.c. electrical conductivities, dielectric constant and dielectric loss factor in single crystals of ethylenediammonium sulphate, (H3NCH2CH2NH3)(SO4), have been measured axiswise as a function of temperature. Anomalous variations in all the above properties at 480 K indicate the occurrence of a phase transition in the above material at this temperature. The existence of such a phase transition is also confirmed by DSC measurements. Electrical conductivity results are analysed and the activation energies of conduction at different temperature regions have been evaluated from the logσ vs 103T−1 plot. Possible mechanisms for the electrical conduction process are discussed, the available results being in favour of a proton transport model.
Resumo:
The microwave and electrical applications of some important conducting polymers are analyzed in this investigation.One of the major drawbacks of conducting polymers is their poor processability,and a solution to overcome this is sought in this investigation.Conducting polymer thermoplastic composites were prepared by the insitu polymerization method to improve the extent of miscibility probably to a semi IPN level.The attractive features of the conducting composite developed are excellent processability,good microwave and electrical conductivity,good microwave absorption,load sensitivity and satisfactory mechanical properties.The composite shows typical frequency selective microwave absorption and refelection behaviors.
Resumo:
This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films
Resumo:
ZnGa2O4 spinel is a promising new UV transparent electronic conductor. Enhancing the electrical conductivity of this potential oxide phosphor can make it a promising transparent conducting oxide. In this paper, we have investigated the effects of processing and doping on the conductivity of semiconducting ZnGa2O4, particularly thin films. Crystalline zinc gallate thin films have been deposited on fused quartz substrates employing the pulsed laser deposition (PLD) technique at room temperature for an oxygen partial pressure of 0.1 Pa (0.001mbar). The films were found to be UV transparent, the band gap of which shifted to 4.75eV on hydrogen annealing. The band gap of the oxygen stoichiometric bulk powder samples (4.55eV) determined from diffuse reflection spectrum (DRS) shifted to 4.81eV on reduction in a hydrogen atmosphere. The electrical conductivity improved when Sn was incorporated into the ZnGa2O4 spinel. The conductivity of ZnGa2O4:Sn thin films was further improved on reduction.
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology
Resumo:
The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.
Resumo:
The present thesis is centered around the study of electrical and thermal properties of certain selected photonic materials.We have studied the electrical conduction mechanism in various phases of certain selected photonic materials and those associated with different phase transitions occurring in them. A phase transition leaves its own impressions on the key parameters like electrical conductivity and dielectric constant. However, the activation energy calculation reveals the dominant factor responsible for conduction process.PA measurements of thermal diffusivity in certain other important photonic materials are included in the remaining part of the research work presented in this thesis. PA technique is a promising tool for studying thermal diffusivities of solid samples in any form. Because of its crucial role and common occurrence in heat flow problems, the thermal diffusivity determination is often necessary and knowledge of thermal diffusivity can intum be used to calculate the thermal conductivity. Especially,knowledge of the thermal diffusivity of semiconductors is important due to its relation to the power dissipation problem in microelectronic and optoelectronic devices which limits their performances. More than that, the thermal properties, especially those of thin films are of growing interest in microelectronics and microsystems because of the heat removal problem involved in highly integrated devices. The prescribed chapter of the present theis demonstrates how direct measurement of thermal diffusivity can be carried out in thin films of interest in a simple and elegant manner using PA techniques. Although results of only representative measurements viz; thermal diffusivity values in Indium, Aluminium, Silver and CdS thin films are given here, evaluation of this quantity for any photonic and / electronic material can be carried out using this technique in a very simple and straight forward manner.
Resumo:
In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.
Resumo:
Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested high‐temperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).
Resumo:
dc and ac electrical conductivities, dielectric constant and dielectric loss factor in single crystals of ethylenediammonium dinitrate (EDN) have been measured axiswise as a function of temperature. All the above properties exhibit anomalous variations at 404 K thereby confirming the occurence of a phase transition in EDN at this temperature. Electrical conductivity parameters have been evaluated and possible conduction mechanisms are discussed. The role of protons in electrical trasport phenomenon is established by chemical analysis.