6 resultados para Sodium balance
em Cochin University of Science
Resumo:
The recent developments in neurobiology have rendered new prominence and potential to study about the structure and function of brain and related disorders. Human behaviour is the net result of neural control of the communication between brain cells. Neurotransmitters are chemicals that are used to relay, amplify and modulate electrical signals between neurons and/or another cell. It mediates rapid intercellular communication through the nervous system by interacting with cell surface receptors. These receptors often trigger second messenger signaling pathways that regulate the activity of ion channels. The functional balance of different neurotransmitters such as Acetylcholine (Ach), Dopamine (DA), Serotonin (5-HT), Norepinephrine (NE), Epinephrine (EPI), Glutamate and Gamma amino butyric acid (GABA) regulates the growth, division and other vital functions of a normal cell / organism (Sudha, 1998). Any change in neurotransmitters' functional balance will result in the failure of cell function and may lead to the occurrence of diseases. Abnormalities in the production or functioning of neurotransmitters have been implicated in a number of neurological disorders like Schizophrenia, Alzheimer's, Epilepsy, Depression and Parkinson's disease. Changes in central and peripheral neuronal signaling system is also noted in diabetes, cancer, cell proliferation, alcoholism and aging. Elucidation of neurotransmitters receptor interaction pathways and gene expression regulation by second messengers and transcriptional factors in health and disease conditions can lead to new small molecules for development of therapeutic agents to improve neurological disease conditions. Increased awareness of the global effects of neurological disorders should help health care planners and the neurological community set appropriate priorities in research, prevention, and management of these diseases.
Resumo:
Two simple and sensitive spectrophotometric methods(A and B) in the visible region have been developed for the determination of cefotaxime sodium (DFTS) in bulk and in dosage forms. Method A is based on the reaction of CFTS with nitrous acid under alkaline conditions to form a stable violet colored chromogen with absorption maximum of 560 nm and method B is based on the reaction of CFTS with1,10-phenanthroline and ferric chloride to form a red colored chromogen with the absorption maximum of 520 mm.The color obeyed Beer’s law in the concentration range of 100-500 µg/ml for method A and 1.6-16 µg/ml for method B, respectively.When pharmaceutical preparations containing CFTS were analysed, the results obtained by the proposed methods are in good agreement with the labeled amounts and are comparable with the results obtained using a UV spectrophotometric method.
Resumo:
The double sulfate family (ABSO4), where A and B are alkali metal cations, is the object of great interest owing to the complexity and richness of its sequence of phase transition induced by temperature variation. A new sulfate salt characterized by the presence of water molecule in the unit cell with the chemical formula, Li2Na3(SO4)2⋅6H2O (LSSW), was obtained. The ultrasonic velocity measurement was done with pulse echo overlap technique [PEO]. All the six second order elastic stiffness constants, C11 = C22, C33, C44 = C55, C12, C14 and C13 = C23 are reported for the first time. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the polar plots of phase velocity, slowness, Young’s modulus and linear compressibility in a–b and a–c planes.
Resumo:
The title reaction was undertaken to establish the interaction between amantadine and molybdate at physiological pH. Identical FTIR spectra, TG-DTA curves and CHN data of the complexes formed from three solutions at pH 1.5, 7.4 and 8.0 indicate that the same complex was formed at all the three pHs. The FTIR spectrum shows shift in peaks corresponding to primary amino group of the drug due to coordination to molybdate. An octahedral geometry is assigned to the complex. The kinetics of the complexation has been studied at low concentrations of the reactants using UV-visible spectrophotometry. At pH 7.4, the initial rate varies linearly with [molybdate]. A plot of initial rate versus [drug] is linear passing through origin. These results indicate that the drug and molybdate react at pH 7.4 even at low concentrations. At pH 1.5, the rate increases linearly with increase in [drug] but decreases with [molybdate]. The effect of pH and ionic strength on the rate of the reaction has also been studied. A suitable mechanism has been proposed for the reaction. Reaction between the drug and molybdate even at low concentrations and the fact that the amino group of amantadine required to be free for its function as antiviral, is bound to molybdate in the complex suggests that simultaneous administration of the drug and molybdate supplements should be avoided.
Resumo:
Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J kg 1 K 1 was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62K at 280 K
Resumo:
The present thesis work focuses on hole doped lanthanum manganites and their thin film forms. Hole doped lanthanum manganites with higher substitutions of sodium are seldom reported in literature. Such high sodium substituted lanthanum manganites are synthesized and a detailed investigation on their structural and magnetic properties is carried out. Magnetic nature of these materials near room temperature is investigated explicitly. Magneto caloric application potential of these materials are also investigated. After a thorough investigation of the bulk samples, thin films of the bulk counterparts are also investigated. A magnetoelectric composite with ferroelectric and ferromagnetic components is developed using pulsed laser deposition and the variation in the magnetic and electric properties are investigated. It is established that such a composite could be realized as a potential field effect device. The central theme of this thesis is also on manganites and is with the twin objectives of a material study leading to the demonstration of a device. This is taken up for investigation. Sincere efforts are made to synthesize phase pure compounds. Their structural evaluation, compositional verification and evaluation of ferroelectric and ferromagnetic properties are also taken up. Thus the focus of this investigation is related to the investigation of a magnetoelectric and magnetocaloric application potentials of doped lanthanum manganites with sodium substitution. Bulk samples of sodium substituted lanthanum manganites. Bulk samples of sodium substituted lanthanum manganites with Na substitution ranging from 50 percent to 90 percent were synthesized using a modified citrate gel method and were found to be orthorhombic in structure belonging to a pbnm spacegroup. The variation in lattice parameters and unit cell volume with sodium concentration were also dealt with. Magnetic measurements revealed that magnetization decreased with increase in sodium concentrations.