6 resultados para Single-phase Rooftop PV
em Cochin University of Science
Resumo:
Two stage processes consisting of precursor preparation by thermal evaporation followed by chalcogenisation in the required atmosphere is found to be a feasible technique for the PV materials such as n-Beta In2S3, p-CulnSe2, p-CulnS2 and p-CuIn(Sel_xSx)2. The growth parameters such as chalcogenisation temperature and duration of chalcogenisation etc have been optimised in the present study.Single phase Beta-In2S3 thin films can be obtained by sulfurising the indium films above 300°C for 45 minutes. Low sulfurisation temperatures required prolonged annealing after the sulfurisation to obtain single phase Beta-1n2S3, which resulted in high material loss. The maximum band gap of 2.58 eV was obtained for the nearly stoichiometric Beta-In2S3 film which was sulfurised at 350°C. This wider band gap, n type Beta-In2S3 can be used as an alternative to toxic CdS as window layer in photovoltaics .The systematic study on the structural optical and electrical properties of CuInSe2 films by varying the process parameters such as the duration of selenization and the selenization temperature led to the conclusion that for the growth of single-phase CuInSe2, the optimum selenization temperature is 350°C and duration is 3 hours. The presence of some binary phases in films for shorter selenization period and lower selenization temperature may be due to the incomplete reaction and indium loss. Optical band gap energy of 1.05 eV obtained for the films under the optimum condition.In order to obtain a closer match to the solar spectrum it is desirable to increase the band gap of the CulnSe2 by a few meV . Further research works were carried out to produce graded band gap CuIn(Se,S)2 absorber films by incorporation of sulfur into CuInSe2. It was observed that when the CulnSe2 prepared by two stage process were post annealed in sulfur atmosphere, the sulfur may be occupying the interstitial positions or forming a CuInS2 phase along with CuInSe2 phase. The sulfur treatment during the selenization process OfCu11 ln9 precursors resulted in Culn (Se,S)2 thin films. A band gap of 1.38 eV was obtained for the CuIn(Se,S)2.The optimised thin films n-beta 1n2S3, p-CulnSe2 and p-Culn(Sel-xSx)2 can be used for fabrication of polycrystalline solar cells.
Resumo:
Single-phase polycrystalline ceramics in the MO-La2O3-Ti02 (M = Ca, Sr, Ba) system, such as cation-deficient hexagonal perovskites CaLa4Ti4O15, SrLa4Ti4O15, BaLa4Ti4O15, and Ca2La4Ti5O18 and the orthorhombic phases CaLa4Ti5O17 and CaLa8Ti9O31, were prepared through the solid-state ceramic route. The phases and structure of the ceramics were analyzed through x-ray diffraction and scanning electron microscopy. The microwave dielectric properties of the ceramics were studied using a network analyzer. The investigated ceramics show high Er in the range 42 to 54, high quality factors with Q x f in the range 16,222 to 50,215 GHz, and low Tf in the range -25 to +6 ppm3/°C. These high dielectric constant materials with high Q x f up to 50,215 GHz are suitable for applications where narrow bandwidth and extremely low insertion loss is necessary, especially at frequencies around 1.9 GHz
Resumo:
Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions
Resumo:
The objective of the present study is the formation of single phase Zn1−xTMxO thin films by PLD and increase the solubility limit of TM dopants. The TM doped ZnO nanostructures were also grown by hydrothermal method. The structural and morphological variation of ZnO:TM thin films and nanostructures with TM doping concentration is also investigated. The origin and enhancement of ferromagnetism in single phase Zn1−xTMxO thin films and nanostructures using spectroscopic techniques were also studied. The dependence of ablation parameters on the structural and optical properties of ZnO thin films were studied
Resumo:
SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined
Resumo:
D.C. and a.c. electrical conductivities, dielectric constant and dielectric loss factor in single crystals of ethylenediammonium sulphate, (H3NCH2CH2NH3)(SO4), have been measured axiswise as a function of temperature. Anomalous variations in all the above properties at 480 K indicate the occurrence of a phase transition in the above material at this temperature. The existence of such a phase transition is also confirmed by DSC measurements. Electrical conductivity results are analysed and the activation energies of conduction at different temperature regions have been evaluated from the logσ vs 103T−1 plot. Possible mechanisms for the electrical conduction process are discussed, the available results being in favour of a proton transport model.