9 resultados para Silicone gels

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: The electrical conductivity of silicone rubber vulcanizates containing carbon blacks [e.g., acetylene black, lamp black, and ISAF (N-234) black] were investigated. The change in electrical conductivity with varying amounts of carbon blacks and the temperature dependence was measured. The mechanical properties like tensile strength, tear strength, elongation at break, hardness, etc., of the vulcanizates were determined. A comparative study of the electrical conductivity of the composites revealed that the electrical conductivity of the composites made with acetylene black was higher than that of the composites made of other blacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gel strength, compressibility and folding characteristic of suwari (set) and kamaboko (set and cooked) gels prepared from rohu (Labeo rohita), catla (Catla catla) and mrigal (Cirrhinus mrigala) surimi were examined to understand the occurrence of suwari and modori phenomena in surimi from major freshwater carps. Suwari setting of gels did not take place at lower temperatures. Suwari gels showed good gel strength at 50 °C for rohu and at 60 °C for catla and mrigal after 30 min setting time. Incubation for 60 min decreased the gel strength at 60 °C for rohu and catla. Setting at 25 °C followed by cooking at 90 °C increased the gel strength. Increased setting temperature, however, decreased the gel strength of cooked gels. Gel strength and compressibility data were supported by folding characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gel strength, compressibility and folding characteristic of suwari (set) and kamaboko (set and cooked) gels prepared from rohu (Labeo rohita), catla (Catla catla) and mrigal (Cirrhinus mrigala) surimi were examined to understand the occurrence of suwari and modori phenomena in surimi from major freshwater carps. Suwari setting of gels did not take place at lower temperatures. Suwari gels showed good gel strength at 50 C for rohu and at 60 C for catla and mrigal after 30 min setting time

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis covers a systematic investigation on the synthesis of silica aerogels and microspheres with tailored porosity, at ambient conditions by varying the experimental parameters as well as using organic templates. Organically modified silica-gelatin and silica-chitosan hybrids were developed for the first time using alkylalkoxysilanes such as MTMS and VTMS. Application of novel silica-biopolymer antiwetting coatings on different substrates such as glass, leather and textile is also demonstrated in the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary aim of this work has been to develop conductive silicone and nitrile rubbers, which are extensively used for making conductive pads in telephone sets, calculators and other applications. Another objective of the work has been to synthesise and characterize novel conducting polymers based on glyoxal and paraphenylenediamine- poly(p-phenylenediazomethine. Conducting polymer matrices were developed from polymer blends such as poly(pphenylenediazomethine), polyethylene, PVC and silica and their properties were studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present study is to have a detailed investigation on the gelation properties, morphology and optical properties of small π-conjugated oligomers. For this purpose we have chosen oligo(p-phenylenevinylene)s (OPVs), a class of molecules which have received considerable attention due to their unique optical and electronic properties. Though a large number of reports are available in the literature on the self-assembly properties of tailor made OPVs, none of them pertain to the design of nanostructures based on organogels. In view of this, we aimed at the creation of functional chromophoric assemblies of π-conjugated OPVs through the formation of organogels, with the objective of crafting nanoscopic assemblies of different size and shape thereby modulating their optical and electronic properties.In order to fulfill the above objectives, the design and synthesis of a variety of OPVs with appropriate structural variations were planned. The design principle involves the derivatization of OPVs with weak H-bonding hydroxymethyl end groups and with long aliphatic hydrocarbon side chains. The noncovalent interactions in these molecules were expected to lead the formation of supramolecular assembly and gels in hydrocarbon solvents. In such an event, detailed study of gelation and extensive analysis of the morphology of the gel structures were planned using advanced microscopic techniques. Since OPVs are strongly fluorescent molecules, gelation is expected to perturb the optical properties. Therefore, detailed study on the gelation induced optical properties as a way to probe the nature and stability of the selfassembly was planned. Apart from this, the potential use of the modulation of the optical properties for the purpose of light harvesting was aimed. The approach to this problem was to entrap an appropriate energy trap to the OPV gel matrix which may lead to the efficient energy transfer from the OPV gel based donor to the entrapped acceptor. The final question that we wanted to address in this investigation was the creation of helical nanostructures through proper modification of the OPV backbone With chiral handles.The present thesis is a detailed and systematic approach to the realization of the above objectives which are presented in different chapters of the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gelation provides a unique medium, which often induces organization of molecules resulting in the modulation of their optical, morphological and electronic properties thereby opening a new world of fascinating materials with interesting physical properties at nano- meso- and macroscopic levels. Supramolecular gels based on linear π-systems have attracted much attention due to their inherent optical and electronic properties which find application in organic electronics, light harvesting and sensing. They exhibit reversible properties due to the dynamic nature of noncovalent forces. As a result, studies on such soft materials are currently a topic of great interest. Recently, researchers are actively involved in the development of sensors and stimuli-responsive materials based on self-assembled π-systems, which are also called smart materials. The present thesis is divided into four chapters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic biomass is probably the best alternative resource for biofuel production and it is composed mainly of cellulose, hemicelluloses and lignin. Cellulose is the most abundant among the three and conversion of cellulose to glucose is catalyzed by the enzyme cellulase. Cellulases are groups of enzymes act synergistically upon cellulose to produce glucose and comprise of endoglucanase, cellobiohydrolase and β-glucosidase. β -glucosidase assumes great importance due to the fact that it is the rate limiting enzyme. Endoglucanases (EG) produces nicks in the cellulose polymer exposing reducing and non reducing ends, cellobiohydrolases (CBH) acts upon the reducing or non reducing ends to liberate cellobiose units, and β - glucosidases (BGL) cleaves the cellobiose to liberate glucose completing the hydrolysis. . β -glucosidases undergo feedback inhibition by their own product- β glucose, and cellobiose which is their substrate. Few filamentous fungi produce glucose tolerant β - glucosidases which can overcome this inhibition by tolerating the product concentration to a particular threshold. The present study had targeted a filamentous fungus producing glucose tolerant β - glucosidase which was identified by morphological as well as molecular method. The fungus showed 99% similarity to Aspergillus unguis strain which comes under the Aspergillus nidulans group where most of the glucose tolerant β -glucosidase belongs. The culture was designated the strain number NII 08123 and was deposited in the NII culture collection at CSIR-NIIST. β -glucosidase multiplicity is a common occurrence in fungal world and in A.unguis this was demonstrated using zymogram analysis. A total 5 extracellular isoforms were detected in fungus and the expression levels of these five isoforms varied based on the carbon source available in the medium. Three of these 5 isoforms were expressed in higher levels as identified by the increased fluorescence (due to larger amounts of MUG breakdown by enzyme action) and was speculated to contribute significantly to the total _- β glucosidase activity. These isoforms were named as BGL 1, BGL3 and BGL 5. Among the three, BGL5 was demonstrated to be the glucose tolerant β -glucosidase and this was a low molecular weight protein. Major fraction was a high molecular weight protein but with lesser tolerance to glucose. BGL 3 was between the two in both activity and glucose tolerance.121 Glucose tolerant .β -glucosidase was purified and characterized and kinetic analysis showed that the glucose inhibition constant (Ki) of the protein is 800mM and Km and Vmax of the enzyme was found to be 4.854 mM and 2.946 mol min-1mg protein-1respectively. The optimumtemperature was 60°C and pH 6.0. The molecular weight of the purified protein was ~10kDa in both SDS as well as Native PAGE indicating that the glucose tolerant BGL is a monomeric protein.The major β -glucosidase, BGL1 had a pH and temperature optima of 5.0 and 60 °C respectively. The apparent molecular weight of the Native protein is 240kDa. The Vmax and Km was 78.8 mol min-1mg protein-1 and 0.326mM respectively. Degenerate primers were designed for glycosyl hydrolase families 1, 3 and 5 and the BGL genes were amplified from genomic DNA of Aspergillus unguis. The sequence analyses performed on the amplicons results confirmed the presence of all the three genes. Amplicon with a size of ~500bp was sequenced and which matched to a GH1 –BGL from Aspergillus oryzae. GH3 degenerate primers producing amplicons were sequenced and the sequences matched to β - glucosidase of GH3 family from Aspergillus nidulans and Aspergillus acculateus. GH5 degenerate primers also gave amplification and sequencing results indicated the presence of GH5 family BGL gene in the Aspergillus unguis genomic DNA.From the partial gene sequencing results, specific as well as degenerate primers were designed for TAIL PCR. Sequencing results of the 1.0 Kb amplicon matched Aspergillus nidulans β -glucosidase gene which belongs to the GH1 family. The sequence mainly covered the N-Terminal region of the matching peptide. All the three BGL proteins ie. BGL1, BGL3 and BGL5 were purified by chromatography an electro elution from Native PAGE gels and were subjected to MALDI-TOF mass spectrometric analysis. The results showed that BGL1 peptide mass matched to . β -glucosidase-I of Aspergillus flavus which is a 92kDa protein with 69% protein coverage. The glucose tolerant β -glucosidase BGL5 mass matched to the catalytic C-terminal domain of β -glucosidase-F from Emericella nidulans, but the protein coverage was very low compared to the size of the Emericella nidulans protein. While comparing the size of BGL5 from Aspergillus unguis, the protein sequence coverage is more than 80%. BGL F is a glycosyl hydrolase family 3 protein.The properties of BGL5 seem to be very unique, in that it is a GH3 β -glucosidase with a very low molecular weight of ~10kDa and at the same time having catalytic activity and glucose 122 tolerance which is as yet un-described in GH β -glucosidases. The occurrence of a fully functional 10kDA protein with glucose tolerant BGL activity has tremendous implications both from the points of understanding the structure function relationships as well as for applications of BGL enzymes. BGL-3 showed similarity to BGL1 of Aspergillus aculateus which was another GH3 β -glucosidase. It may be noted that though PCR could detect GH1, GH3 and GH5 β-glucosidases in the fungus, the major isoforms BGL1 BGL3 and BGL5 were all GH3 family enzymes. This would imply that β-glucosidases belonging to other families may also co-exist in the fungus and the other minor isoforms detected in zymograms may account for them. In biomass hydrolysis, GT-BGL containing BGL enzyme was supplemented to cellulase and the performances of blends were compared with a cocktail where commercial β- glucosidase was supplemented to the biomass hydrolyzing enzyme preparation. The cocktail supplemented with A unguis BGL preparation yielded 555mg/g sugar in 12h compared to the commercial enzyme preparation which gave only 333mg/g in the same period and the maximum sugar yield of 858 mg/g was attained in 36h by the cocktail containing A. unguis BGL. While the commercial enzyme achieved almost similar sugar yield in 24h, there was rapid drop in sugar concentration after that, indicating probably the conversion of glucose back to di-or oligosaccharides by the transglycosylation activity of the BGl in that preparation. Compared this, the A.unguis enzyme containing preparation supported peak yields for longer duration (upto 48h) which is important for biomass conversion to other products since the hydrolysate has to undergo certain unit operations before it goes into the next stage ie – fermentation in any bioprocesses for production of either fuels or chemicals.. Most importantly the Aspergillus unguis BGL preparation yields approximately 1.6 fold increase in the sugar release compared to the commercial BGL within 12h of time interval and 2.25 fold increase in the sugar release compared to the control ie. Cellulase without BGL supplementation. The current study therefore leads to the identification of a potent new isolate producing glucose tolerant β - glucosidase. The organism identified as Aspergillus unguis comes under the Aspergillus nidulans group where most of the GT-BGL producers belong and the detailed studies showed that the glucose tolerant β -glucosidase was a very low molecular weight protein which probably belongs to the glycosyl hydrolase family 3. Inhibition kinetic studies helped to understand the Ki and it is the second highest among the nidulans group of Aspergilli. This has promoted us for a detailed study regarding the mechanism of glucose tolerance. The proteomic 123 analyses clearly indicate the presence of GH3 catalytic domain in the protein. Since the size of the protein is very low and still its active and showed glucose tolerance it is speculated that this could be an entirely new protein or the modification of the existing β -glucosidase with only the catalytic domain present in it. Hydrolysis experiments also qualify this BGL, a suitable candidate for the enzyme cocktail development for biomass hydrolysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed, <5 nm for catalytic activity, <20 nm for making a hard magnetic material soft, <50 nm for refractive index changes, and <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement. Conducting polymers have attracted much attention due to high electrical conductivity, ease of preparation, good environmental stability and wide variety of applications in light-emitting, biosensor chemical sensor, separation membrane and electronic devices. The most widely studied conducting polymers are polypyrrole, polyaniline, polythiophene etc. Conducting polymers provide tremendous scope for tuning of their electrical conductivity from semiconducting to metallic region by way of doping and are organic electro chromic materials with chemically active surface. But they are chemically very sensitive and have poor mechanical properties and thus possessing a processibility problem. Nanomaterial shows the presence of more sites for surface reactivity, they possess good mechanical properties and good dispersant too. Thus nanocomposites formed by combining conducting polymers and inorganic oxide nanoparticles possess the good properties of both the constituents and thus enhanced their utility. The properties of such type of nanocomposite are strongly depending on concentration of nanomaterials to be added. Conducting polymer composites is some suitable composition of a conducting polymer with one or more inorganic nanoparticles so that their desirable properties are combined successfully. The composites of core shell metal oxide particles-conducting polymer combine the electrical properties of the polymer shell and the magnetic, optical, electrical or catalytic characteristics of the metal oxide core, which could greatly widen their applicability in the fields of catalysis, electronics and optics. Moreover nanocomposite material composed of conducting polymers & oxides have open more field of application such as drug delivery, conductive paints, rechargeable batteries, toners in photocopying, smart windows, etc.The present work is mainly focussed on the synthesis, characterization and various application studies of conducting polymer modified TiO2 nanocomposites. The conclusions of the present work are outlined below, Mesoporous TiO2 was prepared by the cationic surfactant P123 assisted hydrothermal synthesis route and conducting polymer modified TiO2 nanocomposites were also prepared via the same technique. All the prepared systems show XRD pattern corresponding to anatase phase of TiO2, which means that there is no phase change occurring even after conducting polymer modification. Raman spectroscopy gives supporting evidence for the XRD results. It also confirms the incorporation of the polymer. The mesoporous nature and surface area of the prepared samples were analysed by N2 adsorption desorption studies and the mesoporous ordering can be confirmed by low angle XRD measurementThe morphology of the prepared samples was obtained from both SEM & TEM. The elemental analysis of the samples was performed by EDX analysisThe hybrid composite formation is confirmed by FT-IR spectroscopy and X-ray photoelectron spectroscopyAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systemsAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systems Polyaniline modified TiO2 nanocomposite systems were found to have good antibacterial activity. Thermal diffusivity studies of the polyaniline modified systems were carried out using thermal lens technique. It is observed that as the amount of polyaniline in the composite increases the thermal diffusivity also increases. The prepared systems can be used as an excellent coolant in various industrial purposes. Nonlinear optical properties (3rd order nonlinearity) of the polyaniline modified systems were studied using Z scan technique. The prepared materials can be used for optical limiting Applications. Lasing studies of polyaniline modified TiO2 systems were carried out and the studies reveal that TiO2 - Polyaniline composite is a potential dye laser gain medium.