26 resultados para Shifted Legendre polynomials
em Cochin University of Science
Resumo:
The wealth of information available freely on the web and medical image databases poses a major problem for the end users: how to find the information needed? Content –Based Image Retrieval is the obvious solution.A standard called MPEG-7 was evolved to address the interoperability issues of content-based search.The work presented in this thesis mainly concentrates on developing new shape descriptors and a framework for content – based retrieval of scoliosis images.New region-based and contour based shape descriptor is developed based on orthogonal Legendre polymomials.A novel system for indexing and retrieval of digital spine radiographs with scoliosis is presented.
Resumo:
This paper reports a novel region-based shape descriptor based on orthogonal Legendre moments. The preprocessing steps for invariance improvement of the proposed Improved Legendre Moment Descriptor (ILMD) are discussed. The performance of the ILMD is compared to the MPEG-7 approved region shape descriptor, angular radial transformation descriptor (ARTD), and the widely used Zernike moment descriptor (ZMD). Set B of the MPEG-7 CE-1 contour database and all the datasets of the MPEG-7 CE-2 region database were used for experimental validation. The average normalized modified retrieval rate (ANMRR) and precision- recall pair were employed for benchmarking the performance of the candidate descriptors. The ILMD has lower ANMRR values than ARTD for most of the datasets, and ARTD has a lower value compared to ZMD. This indicates that overall performance of the ILMD is better than that of ARTD and ZMD. This result is confirmed by the precision-recall test where ILMD was found to have better precision rates for most of the datasets tested. Besides retrieval accuracy, ILMD is more compact than ARTD and ZMD. The descriptor proposed is useful as a generic shape descriptor for content-based image retrieval (CBIR) applications
Resumo:
Gamma aminohutyric acid (GAB A.) receptor tunctionaI status was artaIV se(l in pa It ial hcpatcctoIn ised.II'II). lead nitrate (LN) induced hyperplastic and N-nifrosodiethylantinc INDEAI treated nctplastic rat Iivers during peak DNA synthesis. The high-affinity I'HJGALA binding significantly decreased in PII and NDEi\ rats and the receptor affinity decreased in NDEA and increased in LN rats compared with control . in NDEA. displacement analysis of I'I IIGABA with muscimol showed loss of low-allinity site and a shill of high-allinity cite towards low-allinity . ' 1 he affinity sites shifted towards high-affinity in LN rats. 'file number of low-allinity 1'I Ilhicuc)lline receptors decreased cignilic:uttly in NDEA and I'll whereas it increased in LN rats. (ir\Bi\t receptor :gunist. unrscinrul. disc dependcnllyinhihilcd epidermal growth factor IEGI--) induced DNA synthesis :uul enhanced the tr:utsfnrnting grmvth )actor (Il I I'(il (tlI mediated DNA synthesis suppression in prim:uy hepalucvte cultures . Our results suggest that GABA,t reccjhtor act as an inhibitory signal fur hepatic cell prolifctatiun.
Resumo:
Holographic technology is at the dawn of quick evolution in various new areas including holographic data storage, holographic optical elements, artificial intelligence, optical interconnects, optical correlators, commerce, medical practice, holographic weapon sight, night vision goggles and games etc. One of the major obstacles for the success of holographic technology to a large extent is the lack of suitable recording medium. Compared with other holographic materials such as dichromated gelatin and silver halide emulsions, photopolymers have the great advantage of recording and reading holograms in real time and the spectral sensitivity could be easily shifted to the type of recording laser used by simply changing the sensitizing dye. Also these materials possess characteristics such as good light sensitivity, real time image development, large dynamic range, good optical properties, format flexibility, and low cost. This thesis describes the attempts made to fabricate highly economic photopolymer films for various holographic applications. In the present work, Poly (vinyl alcohol) (PVA) and poly (vinyl chloride) (PVC) are selected as the host polymer matrices and methylene blue (MB) is used as the photosensitizing dye. The films were fabricated using gravity settling method. No chemical treatment or pre/post exposures were applied to the films. As the outcome of the work, photopolymer films with more than 70% efficiency, a permanent recording material which required no fixing process, a reusable recording material etc. were fabricated.
Resumo:
ZnGa2O4 spinel is a promising new UV transparent electronic conductor. Enhancing the electrical conductivity of this potential oxide phosphor can make it a promising transparent conducting oxide. In this paper, we have investigated the effects of processing and doping on the conductivity of semiconducting ZnGa2O4, particularly thin films. Crystalline zinc gallate thin films have been deposited on fused quartz substrates employing the pulsed laser deposition (PLD) technique at room temperature for an oxygen partial pressure of 0.1 Pa (0.001mbar). The films were found to be UV transparent, the band gap of which shifted to 4.75eV on hydrogen annealing. The band gap of the oxygen stoichiometric bulk powder samples (4.55eV) determined from diffuse reflection spectrum (DRS) shifted to 4.81eV on reduction in a hydrogen atmosphere. The electrical conductivity improved when Sn was incorporated into the ZnGa2O4 spinel. The conductivity of ZnGa2O4:Sn thin films was further improved on reduction.
Resumo:
The optical and carrier transport properties of amorphous transparent zinc indium tin oxide (ZITO)(a-ZITO) thin films and the characteristics of the thin-film transistors TFTs were examined as a function of chemical composition. The as-deposited films were very conductive and showed clear free carrier absorption FCA . The analysis of the FCA gave the effective mass value of 0.53 me and a momentum relaxation time of 3.9 fs for an a-ZITO film with Zn:In:Sn = 0.35:0.35:0.3. TFTs with the as-deposited channels did not show current modulation due to the high carrier density in the channels. Thermal annealing at 300°C decreased the carrier density and TFTs fabricated with the annealed channels operated with positive threshold voltages VT when Zn contents were 25 atom % or larger. VT shifted to larger negative values, and subthreshold voltage swing increased with decreasing the Zn content, while large on–off current ratios 107–108 were kept for all the Zn contents. The field effect mobilities ranged from 12.4 to 3.4 cm2 V−1 s−1 for the TFTs with Zn contents varying from 5 to 48 atom %. The role of Zn content is also discussed in relation to the carrier transport properties and amorphous structures.
Resumo:
Stable, OH free zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method by varying the growth temperature and concentration of the precursors. The formation of ZnO nanoparticles were confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies. The average particle size have been found to be about 7-24 nm and the compositional analysis is done with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Diffuse reflectance spectroscopy (DRS) results shows that the band gap of ZnO nanoparticles is blue shifted with decrease in particle size. Photoluminescence properties of ZnO nanoparticles at room temperature were studied and the green photoluminescent emission from ZnO nanoparticles can originate from the oxygen vacancy or ZnO interstitial related defects.
Resumo:
The self adhesion behaviour of thermoplastic polyurethane (TPU) in itself and its composite with short Kevlar fibre with respect to contact time, temperature, pressure, and fibre loading has been studied. The adhesion strength showed two linear increments of different slopes with respect to the square root of time: with temperature and pressure of contact, the adhesion strength was improved. The maximum strength was obtained with 20 phr of short fibre in only one of the mating substrates in the peel test sample. The duration for wetting and diffusion was shifted to longer time intervals with fibres loaded in both the substrates.
Resumo:
The effect of an external flaw on the tensile strength of short kevlar fiber-thermoplastic composites has been studied with respect to fiber content, fiber orientation, location of the external flaw, and the temperature of test. The composites showed a three-step reduction in tensile strength with increasing flaw size. The critical flaw-length region was shifted to higher flaw-size levels with increasing fiber content. With increasing temperature, the critical flaw length was increased in the case of unfilled TPU, whereas it remained more or less constant in the case of short kevlar fiber-filled-TPU composite.
Characterization of Short Nylon-6 Fiber/Acrylonitrile Butadiene Rubber Composite by Thermogravimetry
Resumo:
The thermal degradation of short nylon-6 fiber reinforced acrylonitrile butadiene rubber (NBR) composites with and without epoxy-based bonding agent has been studied by thermogravimetric analysis (TGA). It was found that the onset of degradation shifted from 330.5 to 336.1°C in the presence of short nylon fiber, the optimum fiber loading being 20 phr. The maximum rate of degradation of the composites was lower than that of the unfilled rubber compound, and it decreased with increase in fiber concentration. The presence of epoxy resin-based bonding agent in the virgin elastomer and the composites improved the thermal stability. Results of kinetic studies showed that the degradation of NBR and the short nylon fiber reinforced composites followed first-order kinetics.
Resumo:
The thermal degradation of short polyester fiber reinforced polyurethane composites with and without different bonding agents has been studied by thermogravimetric analysis . It was found that degradation of the polyurethane takes place in two steps and that of the composites takes place in three steps. With the incorporation of 30 phr of fiber in the matrix , the onset of degradation was shifted from 230 to 238 ° C. The presence of bonding agents in the virgin elastomer and the composite gave an improved thermal stability . Results of kinetic studies showed that the degradation of polyurethane and the reinforced composites with and without bonding agents follows first -order reaction kinetics
Resumo:
The thermal degradation of short kevlar fibre-thermoplastic polyurethane (TPU) composites has been studied by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). TGA showed that the thermal degradation of TPU takes place in two steps with peak maxima (T1max and T2ma,) at 383°C and 448°C, respectively. In the presence of 10-40 phr of short kevlar fibres, T1_ and T2max were shifted to lower temperatures. The temperature of onset of degradation was increased from 245 to 255°C at 40 parts per hundred rubber (phr) fibre loading. Kinetic studies showed that the degradation of TPU and kevlar-TPU composite follows first-order reaction kinetics. The DSC study showed that there is an improvement in thermal stability of TPU in the presence of 20 phr of short kevlar fibres.
Resumo:
A new procedure for the classification of lower case English language characters is presented in this work . The character image is binarised and the binary image is further grouped into sixteen smaller areas ,called Cells . Each cell is assigned a name depending upon the contour present in the cell and occupancy of the image contour in the cell. A data reduction procedure called Filtering is adopted to eliminate undesirable redundant information for reducing complexity during further processing steps . The filtered data is fed into a primitive extractor where extraction of primitives is done . Syntactic methods are employed for the classification of the character . A decision tree is used for the interaction of the various components in the scheme . 1ike the primitive extraction and character recognition. A character is recognized by the primitive by primitive construction of its description . Openended inventories are used for including variants of the characters and also adding new members to the general class . Computer implementation of the proposal is discussed at the end using handwritten character samples . Results are analyzed and suggestions for future studies are made. The advantages of the proposal are discussed in detail .
Resumo:
Superparamagnetic nanocomposites based on Y-Fe2O3 and sulphonated polystyrene were synthesised by ion-exchange process and the structural characterisation has been carried out using X-ray diffraction technique. Doping of cobalt in to the Y-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The optical absorption studies show a band gap of 2.84 eV, which is blue shifted by 0.64 eV when compared to the reported values for the bulk samples (2.2 eV). This is explained on the basis of weak quantum confinement. Further size reduction can result in a strong confinement, which can yield transparent magnetic nanocomposites because of further blue shifting. The band gap gets red shifted further with the addition of cobalt in the lattice and this red shift increases with the increase in doping. The observed red shift can be attributed to the strain in the lattice caused by the anisotropy induced by the addition of cobalt. Thus, tuning of bandgap and blue shifting is aided by weak exciton confinement and further red shifting of the bandgap is assisted by cobalt doping.
Resumo:
Sol–gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10–20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si–O–Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto–optical applications.