4 resultados para Self-determination theory
em Cochin University of Science
Resumo:
Application of Queueing theory in areas like Computer networking, ATM facilities, Telecommunications and to many other numerous situation made people study Queueing models extensively and it has become an ever expanding branch of applied probability. The thesis discusses Reliability of a ‘k-out-of-n system’ where the server also attends external customers when there are no failed components (main customers), under a retrial policy, which can be explained in detail. It explains the reliability of a ‘K-out-of-n-system’ where the server also attends external customers and studies a multi-server infinite capacity Queueing system where each customer arrives as ordinary but can generate into priority customer which waiting in the queue. The study gives details on a finite capacity multi-server queueing system with self-generation of priority customers and also on a single server infinite capacity retrial Queue where the customer in the orbit can generate into a priority customer and leaves the system if the server is already busy with a priority generated customer; else he is taken for service immediately. Arrival process is according to a MAP and service times follow MSP.
Resumo:
The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.
Resumo:
This thesis Entitled Spectral theory of bounded self-adjoint operators -A linear algebraic approach.The main results of the thesis can be classified as three different approaches to the spectral approximation problems. The truncation method and its perturbed versions are part of the classical linear algebraic approach to the subject. The usage of block Toeplitz-Laurent operators and the matrix valued symbols is considered as a particular example where the linear algebraic techniques are effective in simplifying problems in inverse spectral theory. The abstract approach to the spectral approximation problems via pre-conditioners and Korovkin-type theorems is an attempt to make the computations involved, well conditioned. However, in all these approaches, linear algebra comes as the central object. The objective of this study is to discuss the linear algebraic techniques in the spectral theory of bounded self-adjoint operators on a separable Hilbert space. The usage of truncation method in approximating the bounds of essential spectrum and the discrete spectral values outside these bounds is well known. The spectral gap prediction and related results was proved in the second chapter. The discrete versions of Borg-type theorems, proved in the third chapter, partly overlap with some known results in operator theory. The pure linear algebraic approach is the main novelty of the results proved here.
Resumo:
In this thesis we attempt to make a probabilistic analysis of some physically realizable, though complex, storage and queueing models. It is essentially a mathematical study of the stochastic processes underlying these models. Our aim is to have an improved understanding of the behaviour of such models, that may widen their applicability. Different inventory systems with randon1 lead times, vacation to the server, bulk demands, varying ordering levels, etc. are considered. Also we study some finite and infinite capacity queueing systems with bulk service and vacation to the server and obtain the transient solution in certain cases. Each chapter in the thesis is provided with self introduction and some important references