12 resultados para Sedimentary nutrient dynamics
em Cochin University of Science
Resumo:
In the present study the nutrient dynamics and fertility of Kuttanad waters is addressed. Kuttanad represent a wetland system with considerable agricultural activities. The hydrographical features of the Kuttanad waters are controlled by discharges from Manimala, Meenachil, Pamba, Achencoil and Muvattupuzha rivers and also by tidal intrusions of saline waters from Cochin backwaters during summers. The fertility of these water bodies were significantly high and supported good agricultural production. Kuttanad water forms the southern part of this aquatic systems and is considered as the most productive zones. As a part of the management scheme for a higher agricultural activity, the Thannermukkam bund was constructed to block and regulate the intrusion of saline water. The increased use of artificial fertilizers along with stagnant character of the water body in this area has resulted in sharp decline in the water quality, productivity and aquatic resources.
Resumo:
The present work aims at deciphering the processes that control the nutrient distribution along the EEZ (Exclusive Economic Zone of India) of the west coast of India and to bring out its linkage with primary and secondary productivity. This work assume utmost importance as very few studies have hitherto focused entirely on the EEZ of the west coast of India to address the biochemical responses brought about by monsoons. The present study examines the seasonal variations in physicochemical parameters and associated primary biological responses along the west coast of India. This study targets to measure and understand the shelf ocean exchange in a typical coastal upwelling region of the southeast Arabian Sea, and the influence of convective mixing along the northern part of the west coast of India. The study focuses more directly on coastal upwelling along the southwest coast of India, within the EEZ. The effects of coastal upwelling, eddy formation and the offshore advection are apparent in the present investigation. This has consequences to fisheries and climate, in energy transfer to the food chain and the increased sequestering of carbon in the ocean. The study also focuses on the Oxygen Minimum Zone (OMZ) and dentrification observed along the EEZ of the west coast of India on a seasonal scale. In the study, an attempt is also made to demarcate the geographical boundaries of the denitrification zone in the EEZ of India and on the nature and magnitude of these variations, on a seasonal and inter annual scales
Resumo:
In the present study the nutrient dynamics and fertility of Kuttanad waters is addressed. Kuttanad represent a wetland system with considerable agricultural activities. The hydrographical features of the Kuttanad waters are controlled by discharges from Manimala, Meenachil, Pamba, Achencoil and Muvattupuzha rivers and also by tidal intrusions of saline waters from Cochin backwaters during summers. The fertility of these water bodies were significantly high and supported good agricultural production. Kuttanad water forms the southern part of this aquatic systems and is considered as the most productive zones. As a part of the management scheme for a higher agricultural activity, the Thannermukkam bund was constructed to block and regulate the intrusion of saline water. The increased use of artificial fertilizers along with stagnant character of the water body in this area has resulted in sharp decline in the water quality, productivity and aquatic resources.
Resumo:
In the present thesis entitled” Implications of Hydrobiology and Nutrient dynamics on Trophic structure and Interactions in Cochin backwaters”, an attempt has been made to assess the influence of general hydrography, nutrients and other environmental factors on the abundance, distribution and trophic interactions in Cochin backwater system. The study was based on five seasonal sampling campaigns carried out at 15 stations spread along the Cochin backwater system. The thesis is presented in the following 5 chapters. Salient features of each chapter are summarized below: Chapter 1- General Introduction: Provides information on the topic of study, environmental factors, back ground information, the significance, review of literature, aim and scope of the present study and its objectives.Chapter 2- Materials and Methods: This chapter deals with the description of the study area and the methodology adopted for sample collection and analysis. Chapter 3- General Hydrograhy and Sediment Characteristics: Describes the environmental setting of the study area explaining seasonal variation in physicochemical parameters of water column and sediment characteristics. Data on hydrographical parameters, nitrogen fractionation, phosphorus fractionation and biochemical composition of the sediment samples were assessed to evaluate the trophic status. Chapter 4- Nutrient Dynamics on Trophic Structure and Interactions: Describes primary, secondary and tertiary production in Cochin backwater system. Primary production related to cell abundance, diversity of phytoplankton that varies seasonally, concentration of various pigments and primary productivitySecondary production refers to the seasonal abundance of zooplankton especially copepod abundance and tertiary production deals with seasonal fish landings, gut content analysis and proximate composition of dominant fish species. The spatiotemporal variation, interrelationships and trophic interactions were evaluated by statistical methods. Chapter 5- Summary: The results and findings of the study are summarized in the fifth chapter of the thesis.
Resumo:
Distribution and chemistry of major inorganic forms of nutrients along with physico-chemical parameters were investigated. Surface sediments and overlying waters of the Ashtamudi and Vembanad Lakes were taken for the study, which is situated in the southwest coast of India. High concentrations of dissolved nitrogen and phosphorus compounds carried by the river leads to oxygen depletion in the water column. A concurrent increase in the bottom waters along with decrease in dissolved oxygen was noticed. This support to nitrification process operating in the sediment-water interface of the Ashtamudi and Vembanad Lake. Estuarine sediments are clayey sand to silty sand both in Ashtamudi and Vembanad in January and May. Present study indicates that the sediment texture is the major controlling factor in the distribution of these nutrient forms. For water samples nitrite, inorganic phosphate was high in Vembanad in January and May compared to Ashtamudi. For sediments, enhanced level of inorganic phosphate and nitrite was found in Vembanad during January and May. It had been observed that the level of N and P is more in sediments. A comparative assessment of the Ashtamudi and Vembanad Lake reveals that the Vembanad wetland is more deteriorated compared to the Ashtamudi wetland system
Resumo:
Kerala is one of the smallest states in India which is situated in the south west coast of the country. Sediment samples from four prominent areas of Kerala Coast were collected and analyzed for nutrients. Variation of nutrients was highlighted according to the distributional characteristics of the designated sites. Nutrient trend in Cape, Trivandrum, Kollam was in the order as Ammonia > Nitrite >Nitrate, where as Cochin showed the trend as Ammonia > Nitrate > Nitrite. Greater concentration of ammonia in the entire sediments showed the ammonification of nitrogen compounds
Resumo:
The amplified human role in shaping natural processes makes it imperative to understand the interactions between abiotic and biotic processes, whcih pertain particularly to the most dyanamic aboitic factor,water. The assessment of environmental parameters is indispensable for the sustainable management of the aqutic system .The conscious harnessing and pampering to protect the characteristics of the ecosystems is the of the day.This thesis attempts to characterize the chemical dynamacity of a tropical estury in relation to the bio, geo and physical processes and thereby to propose a management scheme for its sustainability. Micro speciation is used as a tool for this.
Resumo:
Geochemical characteristics of surficial sediments in the Panangad region of Cochin estuary, the largest brackish-water humid ecosystem in the south-west coast of India, were analysed. Temporal variations in nutrient stoichiometry, seasonal characteristics of redox elements Fe and S, and the phosphorus geochemistry were employed for the purpose. The stoichiometric analysis pointed towards autochthonous origin of organic matter, possibility of nitrogen limitation, and allochthonous modification of redox conditions. Seasonal variations were not statistically significant for all the geochemical parameters, whereas significant spatial variations were observed with lower values at sandy stations, suggesting that the texture of the sediments is the main factor influencing the sediment geochemistry. Significant inter-relations between the geochemical parameters also suggest a common control mechanism. Based on these geochemical characteristics, the study region can be effectively categorized into two distinct zones, viz. (1) erosion and transportation and (2) deposition zones
Resumo:
This study was aimed at to characterize the spatio-temporal trends in the distributional characteristics of various species of nitrogen and phosphorus as well as to elucidate the factors and processes aflecting these nutrients in the dissolved, particulate and sedimentary phases of a river estuarine system. The main area of study is Chalakudy river in Kerala, which is a fresh water system originating from Anamalai hills and ending at Arabian Sea. Its basin is between I00 05 ’ to I00 35’ North latitude and 76” 15 ’ to 760 55’ East longitude. Being a riparian bufler zone, the dynamics of nutrient mobility tend to be more complex and variable in this river-estuarine system.The diflerent species of nitrogen estimated from the filtrate were nitrite-N, nitrateN, ammonia-N, urea-N, total nitrogen and residual nitrogen. The diflerent forms of phosphorus estimated from the filtrate were phosphate-P, total-P and residualP. Pre weighed sediments as well as particulate matter were analysed for quantijying nitrite-N, nitrate-N, ammonia-N and urea-N. Total nitrogen was estimated after digestion with potassium persulfate. Fractionation of phosphorus in sediment/particulate matter was performed by applying sequential extraction procedure. The dijferent forms of phosphorus thus estimated were loosely bound (exchangeable) P, Fe/Al bound P, polyphosphates, Ca bound P and refractory P. Sedimental total P was also measured directly by applying digestion method.The analyses carried out in this bimonthly annual survey have revealed specific information on the latent factors influencing the water quality pattern ofthe river. There was dependence among the chemical components of the river sediment and suspended matter, reflecting the water quality. A period of profound environmental change occurred and changes in various species had been noted in association with seasonal variations in the waterway, especially following enhanced river runoff during the monsoon. The results also successfully represented the distribution trend of nutrients during the rainy as well as dry season. Thus, the information gathered in this work will also be beneficial for those interested or involved in river management, conservation, regulation and policy making in regional and national levels.
Resumo:
In this study dynamics of infaunal benthic community of the continental shelf of north-eastern Arabian sea. The benthic (under water sea) organisms play an important role in the marine food chain. It can be concluded that seasonal differences in the benthic community was observed in lower depths and absent in deeper depths. Increased richness and diversity during pre-monsoon may be related to the increased primary production which inturn influenced by the increased nutrient input due to winter convection. No single ecological factor could be considered as a master factor. In general the area supports moderately high benthic production and diversified community.
Resumo:
The tremendous growth in industrial production and the consequent improving in the standards of living have provoked worldwide discussion on environmental quality. The question of abusive use of pesticides for crop protection and vector control programmes is only one aspect of this entire complex. Inspite of this, tendentious publications such as Rachel Carson’s Silent spring have brought crop protection into the foreground of environmental discussions. The persistence and high stability of organochlorine pesticides are regarded as problematic and the accumulation of pesticides residues and its metabolites in the different compartments of the environment is one of the major concerns. Because of their persistence in the aquatic environment and biomagnifications in food chain, the continuous use of pesticides will have wider implications not only in aquatic environmental quality but also on human health. The residual levels of these persistent chemicals exceed their permissible limits, and get partitioned among the constituent phases of the aquatic systems. Crop protection is only part of the agricultural economy and in agriculture itself has led to the most fundamental changes in the human environment. So, in all areas of life one must weigh the desired advantages against possible disadvantages. The proposed thesis is based on the investigations on the distributions of organochlorine and organophosphorus pesticides in the waters and sediments of Kuttanad backwaters. Kuttanad, a unique agricultural area, which forms the southern part of the Vembanad lake, is a deltaic formation of four river systems entering the southern part of the Cochin estuary. No systematic study has ever been done to assess the ecotoxicological impact of these diverse chemicals and their metabolites in Kuttanad area. So, a detailed systematic and rigorous investigation on the distributions of these persistent chemicals is carried out. The thesis is divided into 7 Chapters
Resumo:
The source, fate and diagentic pathway of sedimentary organic matter in estuaries are difficult to delineate due to the complexity of organic matter sources, intensive physical mixing and biological processes. A combination of bulk organic matter techniques and molecular biomarkers are found to be successful in explaining organic matter dynamics in estuaries. The basic requirement for these multi-proxy approaches are (i) sources have significantly differing characteristics, (ii) there are a sufficient number of tracers to delineate all sources and (iii) organic matter degradation and processing have little, similar or predictable effects on end member characteristics. Although there have been abundant researches that have attempted to tackle difficulties related to the source and fate of organic matter in estuarine systems, our understanding remains limited or rather inconsistent regarding the Indian estuaries. Cochin estuary is the largest among many extensive estuarine systems along the southwest coast of India. It supports as much biological productivity and diversity as tropical rain forests. In this study, we have used a combination of bulk geochemical parameters and different group of molecular biomarkers to define organic matter sources and thereby identifying various biogeochemical processes acting along the salinity gradient of the Cochin estuary