9 resultados para Sectoral Competitiveness
em Cochin University of Science
Resumo:
The study was motivated by the need to understand factors that guide the software exports and competitiveness, both positively and negatively. The influence of one factor or another upon the export competitiveness is to be understood in great depth, which is necessary to find out the industry’s sustainability. India is being emulated as an example for the success strategy in software development and exports. India’s software industry is hailed as one of the globally competitive software industry in the world. The major objectives are to model the growth pattern of exports and domestic sales of software and services of India and to find out the factors influencing the growth pattern of software industry in India. The thesis compare the growth pattern of software industry of India with respect to that of Ireland and Israel and to critically of various problems faced by software industry and export in India and to model the variables of competitiveness of emerging software producing nations
Resumo:
A simple technique for obtaining identical E- and H-plane patterns from E-plane sectoral feed horn is presented. Halfpower beam width and gain of the antenna are also improved considerably. Experimental results for a number of horns with flanges of various parameters are also presented. This system may find practical application in radar and space communication systems
Resumo:
The radiation characteristics of a new type of hollow dielectric H-plane sectoral horn antenna are presented. Metallic strips of optimum length are loaded on the H-walls of the sectoral horns. The effects of strip loading for producing square patterns in the H plane are discussed.
Resumo:
In the present thesis, possibility of beam shaping of sectoral horns and corner reflector systems'has been studied in detail. The experimental results obtained in the above two cases are compared. As far as the flanged sectoral horns are concerned, the special advantage is that the gain is increased without impairing impedance conditions. An intense study on corner reflector antennas shows that the been broadening or focussing will be possible by adjusting parameters involved. Beam tilting by imposing asymmetries is another interesting property of the systems. A comprehensive study of these fields has been presented in Chapter II. Chapter III is exclusively for describing the experimental techniques used in the present investigation. In Chapter IV, experimental results on flanged sectoral horns and corner reflector eyetses are presented. A comparative analysis of the experimental results obtained with flanged sectoral horns and corner reflector systems is presented in the Chapter V. The similarity and close resemblance in each aspects are shown by presenting typical results from these two eysteee. Theoretical aspects of both types of antennas are considered in Chapter VI. Attempts are made for co-ordinating the theoretical aspects and drawing a final conclusion. In Chapter VII. the final conclusion that the flanged sectoral horn may be considered as a corner reflector system has been drawn. The importance of the conclusions and usefulness are pointed out. The scope for further work in these lines has been indicated.
Resumo:
The need for improved feed systems for large reflector antennas employed in Radio Astronomy and Satellite tracking spurred the interest in horn antenna research in the 1960's. The major requirements were to reduce spill over, cross-polarisation losses,and to enhance the aperture efficiency to the order of about 75-8O%L The search for such a feed culminated in the corrugated horn. The corrugat1e 1 horn triggered widespread interest and enthusiasm, and a large amount of work(32’34’49’5O’52’53’58’65’75’79)has already been done on this type of antennas. The properties of corrugated surfaces has been investigated in detail. It was strongly felt that the flange technique and the use of corrugated surfaces could be merged together to obtain the advantages of both. This is the idea behind the present work. Corrugations are made on the surface of flange elements. The effect of various corrugation parameters are studied. By varying the flange parameters, a good amount of data is collected and analysed to ascertain the effects of corrugated flanges. The measurements are repeated at various frequencies, in the X— and S-bands. The following parameters of the system were studied: (a) beam shaping (b) gain (c) variation of V.S.U.R. (d) possibility of obtaining circularly polarised radiation from the flanged horn. A theoretical explanation to the effects of corrugated flanges is attempted on the basis of the line-source theory. Even though this theory utilises a simplified model for the calculation of radiation patterns, fairly good agreement between the computed pattern and experimental results are observed.
Resumo:
The flange technique, suggested by Reynolds72 is simple technique to improve antenna characteristics. Using flange technique we can trim the antenna characteristic by suitably adjusting the flange parameters75. Later corrugated flanges87 are used for beam shaping. The important parameters of the corrugated flanges are (a) flange angle, (b) flange width, (c) flange position, (d) conductivity of the flange, (e) amplitude excitation of the flange elements, (f) period of corrugation etc. Compared to a compound horn the flange technique offers great convenience in trimming antenna characteristics. Horns are commonly used as a feed in radar and satellite communications. A large number of work had been done to improve the characteristics of horn antennas. It is an established fact that grooved walls on the inner surface of a horn can improve the antenna characteristics44. Corrugated comb surface can be used for the circular polarization98, tilt of polarization99 etc. This suggests the possibility to combine these two phenomena and to obtain a resultant beam. This thesis presents the result of an investigation to study the possibility of controlling different antenna characteristics like polarization, beam shaping, matching etc, using corrugated flange techniques.
Resumo:
Antennas play an important role in determining the characteristics of any electronic system which depends on free space as the propagation medium. Basically, an antenna can be considered as the connecting link between free space and the transmitter or receiver. For radar and navigational purposes the directional properties of an antenna is its most basic requirement as it determines the distribution of radiated energy. Hence the study of directional properties of antennas has got special significance and several useful applications.