5 resultados para Scale development
em Cochin University of Science
Resumo:
The measurement of global precipitation is of great importance in climate modeling since the release of latent heat associated with tropical convection is one of the pricipal driving mechanisms of atmospheric circulation.Knowledge of the larger-scale precipitation field also has important potential applications in the generation of initial conditions for numerical weather prediction models Knowledge of the relationship between rainfall intensity and kinetic energy, and its variations in time and space is important for erosion prediction. Vegetation on earth also greatly depends on the total amount of rainfall as well as the drop size distribution (DSD) in rainfall.While methods using visible,infrared, and microwave radiometer data have been shown to yield useful estimates of precipitation, validation of these products for the open ocean has been hampered by the limited amount of surface rainfall measurements available for accurate assessement, especially for the tropical oceans.Surface rain fall measurements(often called the ground truth)are carried out by rain gauges working on various principles like weighing type,tipping bucket,capacitive type and so on.The acoustic technique is yet another promising method of rain parameter measurement that has many advantages. The basic principle of acoustic method is that the droplets falling in water produce underwater sound with distinct features, using which the rainfall parameters can be computed. The acoustic technique can also be used for developing a low cost and accurate device for automatic measurement of rainfall rate and kinetic energy of rain.especially suitable for telemetry applications. This technique can also be utilized to develop a low cost Disdrometer that finds application in rainfall analysis as well as in calibration of nozzles and sprinklers. This thesis is divided into the following 7 chapters, which describes the methodology adopted, the results obtained and the conclusions arrived at.
Resumo:
The report of the Steering Committee of the Kerala State Planning Board for the preparation of the VIII five Year Plan on Industry and Hiningzslisted several factors inhibiting and promoting growth of small industrial units. Kerala's educated manpower, the native intelligence of the Keralites best suited for taking up logic—based professions and availability of a Hell—developed and broad~based physical infrastructure particularly in the transport and communications sectors, are a few of the positive factors identified. On the negative side, may be mentioned high wage rates, preference on the part of the educated for white collar Jobs, lack of entrepreneurship, paucity of essential resources for industrial use, high density of population and the distance factor which places Kerala away from the major domestic markets. In this context, it would appear that the industrial co-operative movement could possibly play a vital role in accelerating-the momentum of small industrial development of Kerala which has a Health of highly educated and skilled manpower. However, in spite of the encouragement extended by the Government, the movement does not seem to have.been picking up in the modern small scale sector. The present study is an attempt to analyse the factors that have affected the performance of the industrial co—operatives in the small scale industrial sector of Kerala.
Resumo:
In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air heaters were subjected to different air mass flow rates in order to standardize the flow per unit area of the collector. Much attention was given to investigate the performance of the solar air heaters fitted with baffles. The output obtained from the experiments on pilot models, helped the installation of solar air heating system for industrial drying applications also. Apart from these, various types of solar dryers, for small and medium scale drying applications, were also built up. The feasibility of ‘latent heat thermal energy storage system’ based on Phase Change Material was also undertaken. The application of solar greenhouse for drying industrial effluent was analyzed in the present study and a solar greenhouse was developed. The effectiveness of Computational Fluid Dynamics (CFD) in the field of solar air heaters was also analyzed. The thesis is divided into eight chapters.
Resumo:
Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.