7 resultados para Sarcoplasmic proteins

em Cochin University of Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis is an attempt to make a comparative study of the composition of the muscle proteins of some commercially important species of fishes and shell fishes of our coast and their changes during preservation and processing. As a part of this the distribution of the major protein nitrogen fractions in several species of fishes and shell fishes was studied in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methylparathion (MP) is an organophosphorus insecticide used world wide in agriculture due to its high activity against a broad spectrum of insect pests. The aim of the study is to understand the effect of methylparathion on the lipid peroxidation, detoxifying and antioxidant enzymes namely catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione Stransferase (GST), total reduced glutathione (GSH), lipid peroxidation (LPO), acetylcholinesterase (AChE) and disease diagnostic marker enzymes in liver, sarcoplasmic (SP) and myofirbirllar (MF) proteins in muscles, lipids and histopathlogical changes in various organs of Labeo rohita of size 75 i 6g at lethal and sublethal level of exposure. The probit analysis showed that the lethal concentration (LC 50%) for 24, 48, 72 and 96h were 15.5mg/L, 12.3mg/L, 11.4mg/L and 10.2mg/L respectively which is much higher compared to the LC50 for juvenile fish. The LPO level and GST activity increased five folds and two folds respectively on exposure to methylparathion at 10.2 mg/L and the level of the enzymes increased, on sub lethal exposure beyond 0.25mg/L. AChE activity was inhibited by 74% at a concentration of 1.8mg/L and 90% at 5.4mg/L. The disease diagnostic marker enzymes AST, ALT, ALP and LDH increased by about 2, 3 ,3 and 2 folds respectively at pesticide concentration of 10.2mg/L when compared to control. On sub lethal exposure, however the enzymes did not show any significant changes up to 0.5mg/L. At a concentration of 10.2 mg/L, there was a three fold increase in myofibrillar proteins while the increase in sarcoplasmic protein was above 1.5 fold. On sub lethal exposure, significant alteration was noticed up to 30 days up to 1mg/L of methylparathion concentration. Further exposure up to 45 days increased sarcoplasmic proteins (upto 0.5mg/L). ln the case of myofibrillar proteins, noticeable changes were observed at 1mg/L concentration right from 15th day. The cholesterol content in brain tissues increased by about 27% at methylparathion concentration of 5.4 mglL. However at 0.25mg/L sub lethal concentration, no significant alteration was observed in enzyme activity, muscle proteins, lipids and histopathology of the tissues. The results suggest that methylparathion has the potential to induce oxidative stress in fish, and that liver, muscle and brains are more sensitive organs of Labeo rohita, with poor antioxidant potentials at higher concentrations of the pesticide. The various parameters studied in this investigation can also be used as biomarkers of methylparathion exposure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To elucidate the effect of washing, on flesh components, mrigal flesh was washed through one, two and three washing cycles. Washing resulted in absorption of water (1-3%) and loss of fat (49%). 35% loss of soluble protein (SP) was noticed in the first washing itself and the loss is almost equally shared by the sarcoplasmic (18% of SP) and the myofibrillar proteins (17% of SP). The subsequent washings removed small portions of water-soluble sarcoplasmic proteins resulting in the concentration of myofibrillar proteins. 73% of the soluble protein was retained in the flesh after three washing cycles. The protein had undergone marginal conformational changes as reflected by the decrease in the actomyosin Ca super(2+) ATPase activity The rheological properties of the washed flesh were,however, significantly better than that of the unwashed mince

Relevância:

20.00% 20.00%

Publicador:

Resumo:

School of Industrial Fisheries, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In India, directed research on penaeid prawn nutrition was taken up only recently when the aquaculture of prawns gained momentum. One of the important penaeid prawns sought for culture and has great potential is Penagus indiggs, H.Milne Edwards. The Central Marine Fisheries Research Institute working on different aspects of culture of this species over the past one and half decades, has developed a hatchery technology for mass production of its seed and has suggested several improvements on its farming in the grow-out systems. One of the areas of active research in this direction has been on the nutrition of the species with a view to develop suitable feed not only for hatchery production of seed, but also in the field culture. As part of this investigation, the present study, on the evaluation of different protein and carbohydrate sources and mineral requirements for the juvenile E, indicus was taken up and the results obtained are embodied in the thesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, three important stressors: cadmium ion (Cd++), salinity and temperature were selected to study their effects on protein and purine catabolism of O. mossambicus. Cadmium (Cd) is a biologically nonessential metal that can be toxic to aquatic animals. Cadmium is a trace element which is a common constituent of industrial effluents. It is a non-nutrient metal and toxic to fish even at low concentrations. Cadmium ions accumulate in sensitive organs like gills, liver, and kidney of fish in an unregulated manner . Thus; the toxic effects of cadmium are related to changes in natural physiological and biochemical processes in organism. The mechanics of osmoregulation (i.e. total solute and water regulation) are reasonably well understood (Evans, 1984, 1993), and most researchers agree that salinities that differ from the internal osmotic concentration of the fish must impose energetic regulatory costs for active ion transport. There is limited information on protein and purine catabolism of euryhaline fish during salinity adaptation. Within a range of non-lethal temperatures, fishes are generally able to cope with gradual temperature changes that are common in natural systems. However, rapid increases or decreases in ambient temperature may result in sub lethal physiological and behavioral responses. The catabolic pathways of proteins and purines are important biochemical processes. The results obtained signifies that O. mossambicus when exposed to different levels of cadmium ion, salinity and temperature show great variation in the catabolism of proteins and purines. The organism is trying to attain homeostasis in the presence of stressors by increasing or decreasing the activity of certain enzymes. The present study revealed that the protein and purine catabolism in O. mossambicus is sensitive to environmental stressors.