3 resultados para Saline Valley Farms (Saline, Mich.)
em Cochin University of Science
Resumo:
A perusal of the literature shows that most of the earlier works on the ecology and productivity from the Indian waters have been confined to the estuarine ecosystms and contiguous neritic and oceanic water bodies. Although some information is available on certain aspects of the envirornental parameters from the ‘coastal lagoon ecosystem‘, there is hardly any indepth study on the ecological and productivity problems from "derlict saline lagoonal environment" in India . In view of this, the researcher undertook a study on the subject "ecology and productivity“ of a typical “coastal saline lagoon"(Pilla;headan lagoon) situated along the southeast coast of India for a period of two years!-N11, 1982 to June, 1984) , and the results of the investigations are embodied in the present thesis entitled "studies on the ecology and productivity of saline lagoon‘.
Resumo:
Two distinct nitrifying bacterial consortia, namely an ammonia oxidizing non-penaeid culture (AMO NPCU-1) and an ammonia oxidizing penaeid culture (AMOPCU-1), have been mass produced in a nitrifying bacterial consortia production unit (NBCPU). The consortia, maintained at 4 C were activated and cultured in a 2 l fermentor initially. At this stage the net biomass (0.105 and 0.112 g/l), maximum specific growth rate (0.112 and 0.105/h) and yield coefficients (1.315 and 2.08) were calculated respectively, for AMONPCU-1 and AMOPCU-1 on attaining stationary growth phase. Subsequently on mass production in a 200 l NBCPU under optimized culture conditions, the total amounts of NH4 ?–N removed by AMONPCU-1 and AMOPCU-1 were 1.948 and 1.242 g/l within 160 and 270 days, respectively. Total alkalinity reduction of 11.7–14.4 and 7.5–9.1 g/l were observed which led to the consumption of 78 and 62 g Na2CO3. The yield coefficient and biomass of AMONPCU-1 were 0.67 and 125.3 g/l and those of AMOPCU-1 were 1.23 and 165 g/l. The higher yield coefficient and growth rate of AMOPCU-1 suggest better energy conversion efficiency and higher CO2 fixation potential. Both of the consortia were dominated by Nitrosomonas-like organisms. The consortia may find application in the establishment of nitrification within marine and brackish water culture systems.