9 resultados para STARS: EMISSION-LINE
em Cochin University of Science
Resumo:
Laser radiation at 1.06 µm from a pulsed Nd:YAG laser was focused onto a multielement YBa2Cu3O7 target in vacuum and the plasma thus generated was studied using time-resolved spectroscopic techniques. Line broadening of the Ba I emission line at 553.5 nm was monitored as a function of time elapsed after the incidence of a laser pulse on the target. Measured line profiles of barium species were used to infer the electron density and temperature, and the time evolution of these important plasma parameters has been worked out.
Resumo:
The laser produced plasma from the multi-component target YBa2CU3O7 was analyzed using Michelson interferometry and time resolved emission spectroscopy. The interaction of 10 ns pulses of 1.06 mum radiation from a Q-switched Nd:YAG laser at laser power densities ranging from 0.55 GW cm-2 to 1.5 GW cm-2 has been studied. Time resolved spectral measurements of the plasma evolution show distinct features at different points in its temporal history. For a time duration of less than 55 ns after the laser pulse (for a typical laser power density of 0.8 GW cm-2, the emission spectrum is dominated by black-body radiation. During cooling after 55 ns the spectral emission consists mainly of neutral and ionic species. Line averaged electron densities were deduced from interferometric line intensity measurements at various laser power densities. Plasma electron densities are of the order of 1017 cm-3 and the plasma temperature at the core region is about 1 eV. The measurement of plasma emission line intensities of various ions inside the plasma gave evidence of multiphoton ionization of the elements constituting the target at low laser power densities. At higher laser power densities the ionization mechanism is collision dominated. For elements such as nitrogen present outside the target, ionization is due to collisions only.
Resumo:
This thesis is entitled “OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu3O7. The work presented in this thesis covers the experimental results on the plasma produced with moderately high power laser with irradiance range in between 10 GW cm 2 to 100 GW cm -2. The characterization of laser produced plasma from solid targets viz. graphite and high temperature superconducting material like YBa2Cu3O7 have been carried out. The fundamental frequency from a Q - switched Nd: YAG laser with 9 ns pulse duration is used for the present studies. Various optical emission emission diagnostic techniques were employed for the the characterization of the LPP which include emission spectroscopy, time resolved studies, line broadening method etc. In order to understand the physical nature of the LPP like recombination, collisional excitation and the laser interaction with plasma, the time resolved studies offer the most logical approach
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
Time and space resolved studies of emission from CN molecules have been carried out in the plasma produced from graphite target by 1.06 urn pulses from a Q-switched Nd:YAG laser. Depending on the laser pulse energy, time of observation and position of the sampled volume of the plasma, the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as functions of distance, time, laser energy and ambient gas pressure. Evidence for nonlinear effects of the plasma medium such as self focusing which exhibits threshold-like behaviour are also obtained. Temperature and electron density of the plasma have been evaluated using the relative line intensities of successive ionization stages of carbon atom. These electron density measurements are verified by using Stark broadening method.
Resumo:
A method of preparation of strontium sulphide phosphors doped with europium is given. Nitrogen laser excited fluorescence emission spectra of these phosphors in the visible region are recorded. A band with line structure in the region 350-430 nm and a new broad band at 460 nm are observed. The splitting pattern for the 6p levels of Eu 2+ are given.
Resumo:
A laser produced plasma from the multielement solid target YBa2Cu3O7 is generated using 1.06 μm, 9 ns pulses from a Q-switched Nd:YAG laser in air at atmospheric pressure. A time resolved analysis of the profile of the 4554.03 Å resonance line emission from Ba II at various laser power densities has been carried out. It has been found that the line has a profile which is strongly self-reversed. It is also observed that at laser power densities equal to or exceeding 1.6×1011 W cm−2, a third peak begins to develop at the centre of the self-reversed profile and this has been interpreted as due to the anisotropic resonance scattering (fluorescence). The number densities of singly ionized barium ions evaluated from the width of the resonance line as a function of time delay with respect to the beginning of the laser pulse give typical values of the order of 1019 cm−3. The higher ion concentrations existing at smaller time delays are seen to decrease rapidly. The Ba II ions in the ground state resonantly absorb the radiation and this absorption is maximum around 120 ns after the laser pulse.