4 resultados para STARK LADDERS

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectroscopic studies of laser -induced plasma from a high-temperature superconducting material, viz., YBa2Cu3O7 (YBCO), have been carried out. Electron temperature and electron density measurements were made from spectral data. The Stark broad ening of emission lines was used to determine the electron density, and the ratio of line in tensities was exploited for the determination of electron temperature. An initial electron temperature of 2.35 eV and electron density of 2.5 3 1017 cm2 3 were observed. The dependence on electron temperature and density on different experimental parameters such as distance from the target, delay time after the in itiation of the plasm a, and laser irradiance is also discussed in detail. Index Headings: Laser -plasma spectroscopy; Plasma diagnostics; Emission spectroscop y; YBa2Cu3O7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time and space resolved studies of emission from CN molecules have been carried out in the plasma produced from graphite target by 1.06 urn pulses from a Q-switched Nd:YAG laser. Depending on the laser pulse energy, time of observation and position of the sampled volume of the plasma, the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as functions of distance, time, laser energy and ambient gas pressure. Evidence for nonlinear effects of the plasma medium such as self focusing which exhibits threshold-like behaviour are also obtained. Temperature and electron density of the plasma have been evaluated using the relative line intensities of successive ionization stages of carbon atom. These electron density measurements are verified by using Stark broadening method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis we have formulated the Dalgarno-Lewis procedure for two-and three-photon processes and an elegant alternate expressions are derived. Starting from a brief review on various multiphoton processes we have discussed the difficulties coming in the perturbative treatment of multiphoton processes. A small discussion on various available methods for studying multiphoton processes are presented in chapter 2. These theoretical treatments mainly concentrate on the evaluation of the higher order matrix elements coming in the perturbation theory. In chapter 3 we have described the use of Dalgarno-Lewis procedure and its implimentation on second order matrix elements. The analytical expressions for twophoton transition amplitude, two-photon ionization cross section, dipole dynamic polarizability and Kramers-Heiseberg are obtained in a unified manner. Fourth chapter is an extension of the implicit summation technique presented in chapter 3. We have clearly mentioned the advantage of our method, especially the analytical continuation of the relevant expressions suited for various values of radiation frequency which is also used for efficient numerical analysis. A possible extension of the work is to study various multiphoton processcs from the stark shifted first excited states of hydrogen atom. We can also extend this procedure for studying multiphoton processes in alkali atoms as well as Rydberg atoms. Also, instead of going for analytical expressions, one can try a complete numerical evaluation of the higher order matrix elements using this procedure.