2 resultados para SOCIAL INFORMATION PROCESSING MODEL
em Cochin University of Science
Resumo:
Sharing of information with those in need of it has always been an idealistic goal of networked environments. With the proliferation of computer networks, information is so widely distributed among systems, that it is imperative to have well-organized schemes for retrieval and also discovery. This thesis attempts to investigate the problems associated with such schemes and suggests a software architecture, which is aimed towards achieving a meaningful discovery. Usage of information elements as a modelling base for efficient information discovery in distributed systems is demonstrated with the aid of a novel conceptual entity called infotron.The investigations are focused on distributed systems and their associated problems. The study was directed towards identifying suitable software architecture and incorporating the same in an environment where information growth is phenomenal and a proper mechanism for carrying out information discovery becomes feasible. An empirical study undertaken with the aid of an election database of constituencies distributed geographically, provided the insights required. This is manifested in the Election Counting and Reporting Software (ECRS) System. ECRS system is a software system, which is essentially distributed in nature designed to prepare reports to district administrators about the election counting process and to generate other miscellaneous statutory reports.Most of the distributed systems of the nature of ECRS normally will possess a "fragile architecture" which would make them amenable to collapse, with the occurrence of minor faults. This is resolved with the help of the penta-tier architecture proposed, that contained five different technologies at different tiers of the architecture.The results of experiment conducted and its analysis show that such an architecture would help to maintain different components of the software intact in an impermeable manner from any internal or external faults. The architecture thus evolved needed a mechanism to support information processing and discovery. This necessitated the introduction of the noveI concept of infotrons. Further, when a computing machine has to perform any meaningful extraction of information, it is guided by what is termed an infotron dictionary.The other empirical study was to find out which of the two prominent markup languages namely HTML and XML, is best suited for the incorporation of infotrons. A comparative study of 200 documents in HTML and XML was undertaken. The result was in favor ofXML.The concept of infotron and that of infotron dictionary, which were developed, was applied to implement an Information Discovery System (IDS). IDS is essentially, a system, that starts with the infotron(s) supplied as clue(s), and results in brewing the information required to satisfy the need of the information discoverer by utilizing the documents available at its disposal (as information space). The various components of the system and their interaction follows the penta-tier architectural model and therefore can be considered fault-tolerant. IDS is generic in nature and therefore the characteristics and the specifications were drawn up accordingly. Many subsystems interacted with multiple infotron dictionaries that were maintained in the system.In order to demonstrate the working of the IDS and to discover the information without modification of a typical Library Information System (LIS), an Information Discovery in Library Information System (lDLIS) application was developed. IDLIS is essentially a wrapper for the LIS, which maintains all the databases of the library. The purpose was to demonstrate that the functionality of a legacy system could be enhanced with the augmentation of IDS leading to information discovery service. IDLIS demonstrates IDS in action. IDLIS proves that any legacy system could be augmented with IDS effectively to provide the additional functionality of information discovery service.Possible applications of IDS and scope for further research in the field are covered.
Resumo:
The present study described about the interaction of a two level atom and squeezed field with time varying frequency. By applying a sinusoidal variation in the frequency of the field, the randomness in population inversion is reduced and the collapses and periodic revivals are regained. Quantum optics is an emerging field in physics which mainly deals with the interaction of atoms with quantised electromagnetic fields. Jaynes-Cummings Model (JCM) is a key model among them, which describes the interaction between a two level atom and a single mode radiation field. Here the study begins with a brief history of light, atom and their interactions. Also discussed the interaction between atoms and electromagnetic fields. The study suggest a method to manipulate the population inversion due to interaction and control the randomness in it, by applying a time dependence on the frequency of the interacting squeezed field.The change in behaviour of the population inversion due to the presence of a phase factor in the applied frequency variation is explained here.This study also describes the interaction between two level atom and electromagnetic field in nonlinear Kerr medium. It deals with atomic and field state evolution in a coupled cavity system. Our results suggest a new method to control and manipulate the population of states in two level atom radiation interaction,which is very essential for quantum information processing.We have also studied the variation of atomic population inversion with time, when a two level atom interacts with light field, where the light field has a sinusoidal frequency variation with a constant phase. In both coherent field and squeezed field cases, the population inversion variation is completely different from the phase zero frequency modulation case. It is observed that in the presence of a non zero phase φ, the population inversion oscillates sinusoidally.Also the collapses and revivals gradually disappears when φ increases from 0 to π/2. When φ = π/2 the evolution of population inversion is identical to the case when a two level atom interacts with a Fock state. Thus, by applying a phase shifted frequency modulation one can induce sinusoidal oscillations of atomic inversion in linear medium, those normally observed in Kerr medium. We noticed that the entanglement between the atom and field can be controlled by varying the period of the field frequency fluctuations. The system has been solved numerically and the behaviour of it for different initial conditions and different susceptibility values are analysed. It is observed that, for weak cavity coupling the effect of susceptibility is minimal. In cases of strong cavity coupling, susceptibility factor modifies the nature in which the probability oscillates with time. Effect of susceptibility on probability of states is closely related to the initial state of the system.