1 resultado para SIFT background model
em Cochin University of Science
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (88)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (29)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (7)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (12)
- Institutional Repository of Leibniz University Hannover (3)
- Instituto Gulbenkian de Ciência (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (4)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Queensland University of Technology - ePrints Archive (486)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (70)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (19)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Detection of Objects in Video is a highly demanding area of research. The Background Subtraction Algorithms can yield better results in Foreground Object Detection. This work presents a Hybrid CodeBook based Background Subtraction to extract the foreground ROI from the background. Codebooks are used to store compressed information by demanding lesser memory usage and high speedy processing. This Hybrid method which uses Block-Based and Pixel-Based Codebooks provide efficient detection results; the high speed processing capability of block based background subtraction as well as high Precision Rate of pixel based background subtraction are exploited to yield an efficient Background Subtraction System. The Block stage produces a coarse foreground area, which is then refined by the Pixel stage. The system’s performance is evaluated with different block sizes and with different block descriptors like 2D-DCT, FFT etc. The Experimental analysis based on statistical measurements yields precision, recall, similarity and F measure of the hybrid system as 88.74%, 91.09%, 81.66% and 89.90% respectively, and thus proves the efficiency of the novel system.