14 resultados para SEMICONDUCTOR-LASERS

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic synchronization of two directly modulated semiconductor lasers with negative delayed optoelectronic feedback is investigated and this scheme is found to be useful for e±cient bidirectional communication between the lasers. A symmetric bidirec- tional coupling is identified as a suitable method for isochronal synchronization of such lasers. The optimum values of coupling and feedback strength that can provide maxi- mum quality of synchronization are identified. This method is successfully employed for encoding/decoding both analog and digital messages. The importance of a symmetric coupling is demonstrated by studying the variation of decoding efficiency with respect to asymmetric coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isochronal synchronisation between the elements of an array of three mutually coupled directly modulated semiconductor lasers is utilized for the purpose of simultaneous bidirectional secure communication. Chaotic synchronisation is achieved by adding the coupling signal to the self feedback signal provided to each element of the array. A symmetric coupling is effective in inducing synchronisation between the elements of the array. This coupling scheme provides a direct link between every pair of elements thus making the method suitable for simultaneous bidirectional communication between them. Both analog and digital messages are successfully encrypted and decrypted simultaneously by each element of the array.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chaotic dynamics of directly modulated semiconductor lasers with delayed optoelectronic feedback is studied numerically. The effects of positive and negative delayed optoelectronic feedback in producing chaotic outputs from such lasers with nonlinear gain reduction in its optimum value range is investigated using bifurcation diagrams. The results are confirmed by calculating the Lyapunov exponents. A negative delayed optoelectronic feedback configuration is found to be more effective in inducing chaotic dynamics to such systems with nonlinear gain reduction factor in the practical value range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of coupling on two high frequency modulated semiconductor lasers is numerically studied. The phase diagrams and bifurcatio.n diagrams are drawn. As the coupling constant is increased the system goes from chaotic to periodic behavior through a reverse period doubling sequence. The Lyapunov exponent is calculated to characterize chaotic and periodic regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of a numerical study of synchronisation of two directly modulated semiconductor lasers, using bi-directional coupling, are presented. The effect of stepwise increase in the coupling strength (C) on the synchronisation of the chaotic outputs of two such lasers is studied, with the help of parameter space plots, synchronisation error plots, phase diagrams and time series outputs. Numerical results indicate that as C increases, the system achieves synchronisation as well as stability together with an increase in the output power. The stability of the synchronised states is checked by applying a perturbation to the system after it becomes synchronised and then noting the time it takes to regain synchronisation. For lower values of C the system does not regain synchronisation. But, with higher values synchronisation is regained within a very short time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaos is a subject oftopical interest and, studied in great detail in relation to its relevance in almost all branches of science, which include physical, chemical, and biological fields. Chaos in the literal sense signifies utter confusion, but the scientific community has differentiated chaos as deterministic chaos and white noise. Deterministic chaos implies the complex behaviour of systems, which are governed by deterministic laws. Behaviour of such systems often become unpredictable in the long run. This unpredictability arises from the sensitivity of the system to its initial conditions. The essential requirement for ‘sensitivity to initial condition’ is nonlinearity of the system. The only method for determining the future of such systems is numerically simulating its final state from a set ofinitial conditions. Synchronisation

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonlinear dynamics of laser systems has become an interesting area of research in recent times. Lasers are good examples of nonlinear dissipative systems showing many kinds of nonlinear phenomena such as chaos, multistability and quasiperiodicity. The study of these phenomena in lasers has fundamental scientific importance since the investigations on these effects reveal many interesting features of nonlinear effects in practical systems. Further, the understanding of the instabilities in lasers is helpful in detecting and controlling such effects. Chaos is one of the most interesting phenomena shown by nonlinear deterministic systems. It is found that, like many nonlinear dissipative systems, lasers also show chaos for certain ranges of parameters. Many investigations on laser chaos have been done in the last two decades. The earlier studies in this field were concentrated on the dynamical aspects of laser chaos. However, recent developments in this area mainly belong to the control and synchronization of chaos. A number of attempts have been reported in controlling or suppressing chaos in lasers since lasers are the practical systems aimed to operated in stable or periodic mode. On the other hand, laser chaos has been found to be applicable in high speed secure communication based on synchronization of chaos. Thus, chaos in laser systems has technological importance also. Semiconductor lasers are most applicable in the fields of optical communications among various kinds of laser due to many reasons such as their compactness, reliability modest cost and the opportunity of direct current modulation. They show chaos and other instabilities under various physical conditions such as direct modulation and optical or optoelectronic feedback. It is desirable for semiconductor lasers to have stable and regular operation. Thus, the understanding of chaos and other instabilities in semiconductor lasers and their xi control is highly important in photonics. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated. A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor laser

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chaotic dynamics of directly modulated semiconductor lasers have been studied extensively over the last two decades because of their application in secure optical communication. However, chaos is generally suppressed in such systems when the nonlinear gain reduction factor is above 0.01 which is very much smaller than the reported values in semiconductors like InGaAsP. In this paper we show that by giving an optoelectronic feedback with appropriate delay one can increase the range of the values of the gain reduction factor for which chaos can be observed. Numerical studies show that negative feedback is more efficient in producing chaotic dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis deals with the preparation of chemical, optical, thermal and electrical characterization of five compounds, namely metal free naphthalocyanine, vanadyl napthalocyanine, zinc naphlocyanine, europium dinaphthalocyanine, and europium diphthalocyanine in the pristine and iodine-doped forms. Two important technological properties of these compounds have been investigated. The electrical properties are important in applications sensors and semiconductor lasers. Opto-thermal properties assume significance for optical imaging and data recording. The electrical properties were investigated by dc and ac techniques. This work has revealed some novel information on the conduction mechanism in five macrocyclic compounds and their iodine-doped forms. Also useful data on the thermal diffusivity of the target compounds have been obtained by optical techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear dynamics has emerged into a prominent area of research in the past few Decades.Turbulence, Pattern formation,Multistability etc are some of the important areas of research in nonlinear dynamics apart from the study of chaos.Chaos refers to the complex evolution of a deterministic system, which is highly sensitive to initial conditions. The study of chaos theory started in the modern sense with the investigations of Edward Lorentz in mid 60's. Later developments in this subject provided systematic development of chaos theory as a science of deterministic but complex and unpredictable dynamical systems. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. Here we introduce the concept of noise, and two familiar types of noise are discussed. The classifications and representation of white and colored noise are introduced. Based on this we introduce the concept of randomness that we deal with as a variant of the familiar concept of noise. The dynamical systems introduced are the Rossler system, directly modulated semiconductor lasers and the Harmonic oscillator. The directly modulated semiconductor laser being not a much familiar dynamical system, we have included a detailed introduction to its relevance in Chaotic encryption based cryptography in communication. We show that the effect of a fluctuating parameter mismatch on synchronization is to destroy the synchronization. Further we show that the relation between synchronization error and timescales can be found empirically but there are also cases where this is not possible. Studies show that under the variation of the parameters, the system becomes chaotic, which appears to be the period doubling route to chaos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years,photonics has emerged as an essential technology related to such diverse fields like laser technology,fiber optics,communication,optical signal processing,computing,entertainment,consumer electronics etc.Availabilities of semiconductor lasers and low loss fibers have also revolutionized the field of sensor technology including telemetry. There exist fiber optic sensors which are sensitive,reliable.light weight and accurate devices which find applications in wide range of areas like biomedicine,aviation,surgery,pollution monitoring etc.,apart from areas in basic sciences.The present thesis deals with the design,fabrication and characterization of a variety of cost effective and sensitive fiber optic sensors for the trace detetction of certain environment pollutants in air and water.The sensor design is carried out using the techniques like evanescent waves,micro bending and long period gratings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser engineering is an area in which developments in the existing design concepts and technology appear at an alarming rate. Now—a-days, emphasis has shifted from innovation to cost reduction and system improvement. To a major extent, these studies are aimed at attaining larger power densities, higher system efficiency and identification of new lasing media and new lasing wavelengths. Todate researchers have put to use all the ditferent Forms of matter as lasing material. Laser action was observed For the first time in a gaseous system - the He-Ne system. This was Followed by a variety of solidstate and gas laser systems. Uarious organic dyes dissolved in suitable solvents were found to lase when pumped optically. Broad band emission characteristics of these dye molecules made wavelength tuning possible using optical devices. Laser action was also observed in certain p-n junctions of semiconductor materials and some of these systems are also tunable. The recent addition to this list was the observation of laser action from certain laser produced plasmas. The purpose of this investigation was to examine the design and Fabrication techniques of pulsed Nitrogen lasers and high power Nd: Glass laserso Attempt was also made to put the systems developed into certain related experiments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures