4 resultados para Ridge Regression
em Cochin University of Science
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576
Resumo:
The evolution of coast through geological time scale is dependent on the transgression-regression event subsequent to the rise or fall of sea level. This event is accounted by investigation of the vertical sediment deposition patterns and their interrelationship for paleo-enviornmental reconstruction. Different methods like sedimentological (grain size and micro-morphological) and geochemical (elemental relationship) analyses as well as radiocarbon dating are generally used to decipher the sea level changes and paleoclimatic conditions of the Quaternary sediment sequence. For the Indian coast with a coastline length of about 7500 km, studies on geological and geomorphological signatures of sea level changes during the Quaternary were reported in general by researchers during the last two decades. However, for the southwest coast of India particularily Kerala which is famous for its coastal landforms comprising of estuaries, lagoons, backwaters, coastal plains, cliffs and barrier beaches, studies pertaining to the marine transgression-regression events in the southern region are limited. The Neendakara-Kayamkulam coastal stretch in central Kerala where the coast is manifested with shore parallel Kayamkulam Lagoon on one side and shore perpendicular Ashtamudi Estuary on the other side indicating existence of an uplifted prograded coastal margin followed by barrier beaches, backwater channels, ridge and runnel topography is an ideal site for studying such events. Hence the present study has been taken up in this context to address the gap area. The location for collection of core samples representing coastal plain, estuarylagoon and offshore regions have been identified based on published literature and available sedimentary records. The objectives of the research work are: To study the lithological variations and depositional environments of sediment cores along the coastal plain, estuary-lagoon and offshore regions between Kollam and Kayamkulam in the central Kerala coast To study the transportation and diagenetic history of sediments in the area To investigate the geochemical characterization of sediments and to elucidate the source-sink relationship To understand the marine transgression-regression events and to propose a conceptual model for the region The thesis comprises of 8 chapters. The first chapter embodies the preamble for the selection and significance of this research work. The study area is introduced with details on its physiographical, geological, geomorphological, rainfall and climate information. A review of literature, compiling the research on different aspects such as physico-chemical, geomorphological, tectonics, transgression-regression events are presented in the second chapter and they are broadly classified into three viz:- International, National and Kerala. The field data collection and laboratory analyses adopted in the research work are discussed in the third chapter. For collection of sediment core samples from the coastal plains, rotary drilling method was employed whereas for the estuary-lagoon and offshore locations the gravity/piston corer method was adopted. The collected subsurficial samples were analysed for texture, surface micro-texture, elemental analysis, XRD and radiocarbon dating techniques for age determination. The fourth chapter deals with the textural analysis of the core samples collected from various predefined locations of the study area. The result reveals that the Ashtamudi Estuary is composed of silty clay to clayey type of sediments whereas offshore cores are carpeted with silty clay to relict sand. Investigation of the source of sediments deposited in the coastal plain located on either side of the estuary indicates the dominance of terrigenous to marine origin in the southern region whereas it is predominantly of marine origin towards the north. Further the hydrodynamic conditions as well as the depositional enviornment of the sediment cores are elucidated based on statistical parameters that decipher the deposition pattern at various locations viz., coastal plain (open to closed basin), Ashtamudi Estuary (partially open to restricted estuary to closed basin) and offshore (open channel). The intensity of clay minerals is also discussed. From the results of radiocarbon dating the sediment depositional environments were deciphered.The results of the microtextural study of sediment samples (quartz grains) using Scanning Electron Microscope (SEM) are presented in the fifth chapter. These results throw light on the processes of transport and diagenetic history of the detrital sediments. Based on the lithological variations, selected quartz grains of different environments were also analysed. The study indicates that the southern coastal plain sediments were transported and deposited mechanically under fluvial environment followed by diagenesis under prolonged marine incursion. But in the case of the northern coastal plain, the sediments were transported and deposited under littoral environment indicating the dominance of marine incursion through mechanical as well as chemical processes. The quartz grains of the Ashtamudi Estuary indicate fluvial origin. The surface texture features of the offshore sediments suggest that the quartz grains are of littoral origin and represent the relict beach deposits. The geochemical characterisation of sediment cores based on geochemical classification, sediment maturity, palaeo-weathering and provenance in different environments are discussed in the sixth chapter. In the seventh chapter the integration of multiproxies data along with radiocarbon dates are presented and finally evolution and depositional history based on transgression–regression events is deciphered. The eighth chapter summarizes the major findings and conclusions of the study with recommendation for future work.