14 resultados para Retrial Inventory Systems
em Cochin University of Science
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
This thesis Entitled Stochastic modelling and analysis.This thesis is divided into six chapters including this introductory chapter. In second chapter, we consider an (s,S) inventory model with service, reneging of customers and finite shortage of items.In the third chapter, we consider an (s,S) inventoiy system with retrial of customers. Arrival of customers forms a Poisson process with rate. When the inventory level depletes to s due to demands, an order for replenishment is placed.In Chapter 4, we analyze and compare three (s,S) inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed. In chapter 5, we analyze and compare three production inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed.In chapter 6, we consider a PH /PH /l inventory model with reneging of customers and finite shortage of items.
Resumo:
In this thesis we have developed a few inventory models in which items are served to the customers after a processing time. This leads to a queue of demand even when items are available. In chapter two we have discussed a problem involving search of orbital customers for providing inventory. Retrial of orbital customers was also considered in that chapter; in chapter 5 also we discussed retrial inventory model which is sans orbital search of customers. In the remaining chapters (3, 4 and 6) we did not consider retrial of customers, rather we assumed the waiting room capacity of the system to be arbitrarily large. Though the models in chapters 3 and 4 differ only in that in the former we consider positive lead time for replenishment of inventory and in the latter the same is assumed to be negligible, we arrived at sharper results in chapter 4. In chapter 6 we considered a production inventory model with production time distribution for a single item and that of service time of a customer following distinct Erlang distributions. We also introduced protection of production and service stages and investigated the optimal values of the number of stages to be protected.
Resumo:
The thesis deals with analysis of some Stochastic Inventory Models with Pooling/Retrial of Customers.. In the first model we analyze an (s,S) production Inventory system with retrial of customers. Arrival of customers from outside the system form a Poisson process. The inter production times are exponentially distributed with parameter µ. When inventory level reaches zero further arriving demands are sent to the orbit which has capacity M(<∞). Customers, who find the orbit full and inventory level at zero are lost to the system. Demands arising from the orbital customers are exponentially distributed with parameter γ. In the model-II we extend these results to perishable inventory system assuming that the life-time of each item follows exponential with parameter θ. The study deals with an (s,S) production inventory with service times and retrial of unsatisfied customers. Primary demands occur according to a Markovian Arrival Process(MAP). Consider an (s,S)-retrial inventory with service time in which primary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory is controlled by the (s,S) policy and (s,S) inventory system with service time. Primary demands occur according to Poissson process with parameter λ. The study concentrates two models. In the first model we analyze an (s,S) Inventory system with postponed demands where arrivals of demands form a Poisson process. In the second model, we extend our results to perishable inventory system assuming that the life-time of each item follows exponential distribution with parameter θ. Also it is assumed that when inventory level is zero the arriving demands choose to enter the pool with probability β and with complementary probability (1- β) it is lost for ever. Finally it analyze an (s,S) production inventory system with switching time. A lot of work is reported under the assumption that the switching time is negligible but this is not the case for several real life situation.
Resumo:
In this thesis we have presented several inventory models of utility. Of these inventory with retrial of unsatisfied demands and inventory with postponed work are quite recently introduced concepts, the latt~~ being introduced for the first time. Inventory with service time is relatively new with a handful of research work reported. The di lficuity encoLlntered in inventory with service, unlike the queueing process, is that even the simplest case needs a 2-dimensional process for its description. Only in certain specific cases we can introduce generating function • to solve for the system state distribution. However numerical procedures can be developed for solving these problem.
Resumo:
In everyday life different flows of customers to avail some service facility or other at some service station are experienced. In some of these situations, congestion of items arriving for service, because an item cannot be serviced Immediately on arrival, is unavoidable. A queuing system can be described as customers arriving for service, waiting for service if it is not immediate, and if having waited for service, leaving the system after being served. Examples Include shoppers waiting in front of checkout stands in a supermarket, Programs waiting to be processed by a digital computer, ships in the harbor Waiting to be unloaded, persons waiting at railway booking office etc. A queuing system is specified completely by the following characteristics: input or arrival pattern, service pattern, number of service channels, System capacity, queue discipline and number of service stages. The ultimate objective of solving queuing models is to determine the characteristics that measure the performance of the system
Resumo:
This thesis analyses certain problems in Inventories and Queues. There are many situations in real-life where we encounter models as described in this thesis. It analyses in depth various models which can be applied to production, storag¢, telephone traffic, road traffic, economics, business administration, serving of customers, operations of particle counters and others. Certain models described here is not a complete representation of the true situation in all its complexity, but a simplified version amenable to analysis. While discussing the models, we show how a dependence structure can be suitably introduced in some problems of Inventories and Queues. Continuous review, single commodity inventory systems with Markov dependence structure introduced in the demand quantities, replenishment quantities and reordering levels are considered separately. Lead time is assumed to be zero in these models. An inventory model involving random lead time is also considered (Chapter-4). Further finite capacity single server queueing systems with single/bulk arrival, single/bulk services are also discussed. In some models the server is assumed to go on vacation (Chapters 7 and 8). In chapters 5 and 6 a sort of dependence is introduced in the service pattern in some queuing models.
Resumo:
In this thesis we study the effect of rest periods in queueing systems without exhaustive service and inventory systems with rest to the server. Most of the works in the vacation models deal with exhaustive service. Recently some results have appeared for the systems without exhaustive service.
Resumo:
In this thesis we attempt to make a probabilistic analysis of some physically realizable, though complex, storage and queueing models. It is essentially a mathematical study of the stochastic processes underlying these models. Our aim is to have an improved understanding of the behaviour of such models, that may widen their applicability. Different inventory systems with randon1 lead times, vacation to the server, bulk demands, varying ordering levels, etc. are considered. Also we study some finite and infinite capacity queueing systems with bulk service and vacation to the server and obtain the transient solution in certain cases. Each chapter in the thesis is provided with self introduction and some important references
Resumo:
In this thesis the queueing-inventory models considered are analyzed as continuous time Markov chains in which we use the tools such as matrix analytic methods. We obtain the steady-state distributions of various queueing-inventory models in product form under the assumption that no customer joins the system when the inventory level is zero. This is despite the strong correlation between the number of customers joining the system and the inventory level during lead time. The resulting quasi-birth-anddeath (QBD) processes are solved explicitly by matrix geometric methods
Resumo:
The thesis entitled Analysis of Some Stochastic Models in Inventories and Queues. This thesis is devoted to the study of some stochastic models in Inventories and Queues which are physically realizable, though complex. It contains a detailed analysis of the basic stochastic processes underlying these models. In this thesis, (s,S) inventory systems with nonidentically distributed interarrival demand times and random lead times, state dependent demands, varying ordering levels and perishable commodities with exponential life times have been studied. The queueing system of the type Ek/Ga,b/l with server vacations, service systems with single and batch services, queueing system with phase type arrival and service processes and finite capacity M/G/l queue when server going for vacation after serving a random number of customers are also analysed. The analogy between the queueing systems and inventory systems could be exploited in solving certain models. In vacation models, one important result is the stochastic decomposition property of the system size or waiting time. One can think of extending this to the transient case. In inventory theory, one can extend the present study to the case of multi-item, multi-echelon problems. The study of perishable inventory problem when the commodities have a general life time distribution would be a quite interesting problem. The analogy between the queueing systems and inventory systems could be exploited in solving certain models.
Resumo:
The thesis entitled Inventory Management In Public Sector Electrical Industry In Kerala. Investigations were carried out on inventory management in public sector electrical industry in Kerala and suggest methods to improve their efficiency. Various aspects of inventory management, its scope and need in industry are detailed. The objectives of the present study concentrates to get an overall view of the system of inventory management, assess the positions and levels of inventory. It analyzes the inventory management policies and practices, the organizational set-up for materials by the electrical undertakings. The study examines the liquidity of the electrical undertakings as well as techniques of inventory management in the electrical industry in Kerala. Hypotheses state that the existing organizational systems and practices are inadequate to ensure efficient management of inventories in electrical industry. Introduction of scientific inventory techniques has a favourable effect on the workings of inventory departments. The financial performance of the public sector electrical undertakings is not at all satisfactory on account of the high raw material costs, heavy borrowings and huge interest burdens. The scope of this study is limited to the assessment of savings, in inventories of electrical products due to inventory management. The methodology of the study is to project the cost reduction of the inventory department on the basis of data collected and to validate this projection with the aid of analysis and survey. The limitations of the study is that the data obtained relate to the period 1989-90 and earlier and the current position is not available and uniform norms cannot be applied to evaluate different inventory management organisation.
Resumo:
The objective of this thesis is to study the time dependent behaviour of some complex queueing and inventory models. It contains a detailed analysis of the basic stochastic processes underlying these models. In the theory of queues, analysis of time dependent behaviour is an area.very little developed compared to steady state theory. Tine dependence seems certainly worth studying from an application point of view but unfortunately, the analytic difficulties are considerable. Glosod form solutions are complicated even for such simple models as M/M /1. Outside M/>M/1, time dependent solutions have been found only in special cases and involve most often double transforms which provide very little insight into the behaviour of the queueing systems themselves. In inventory theory also There is not much results available giving the time dependent solution of the system size probabilities. Our emphasis is on explicit results free from all types of transforms and the method used may be of special interest to a wide variety of problems having regenerative structure.