4 resultados para Regression (Psychology)

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was undertaken with the primary objective of explaining differences in consumption of personal care products using personality variables. Several streams of research reported were reviewed and a conceptual model was developed. Theories on the relationship between self concept and behaviour was reviewed and the need to use individual difference variables to conceptualize and measure the salient dimensions of the self were emphasized. Theories relating to social comparison, eating disorders, role of idealized media images in shaping the self-concept, evidence on cosmetic surgery and persuasibility were reviewed in the study. These came from diverse fields like social psychology, use of cosmetics, women studies, media studies, self-concept literature in psychology and consumer research, and marketing. From the review three basic dimensions, namely self-evaluation, self-awareness and persuasibility were identified and they were posited to be related to consumption. Several personality variables from these conceptual domains were identified and factor analysis confirmed the expected structure fitting the basic theoretical dimensions. Demographic variables like gender and income were also considered.It was found that self-awareness measured by the variable public self-consciousness explain differences in consumption of personal care products. The relationship between public self-consciousness and consumption was found to be most conspicuous in cases of poor self-, evaluation measured by self-esteem. Susceptibility to advertising also was found to explain differences in consumption.From the research, it may be concluded that personality variables are useful for explaining consumption and they must be used together to explain and understand the process. There may not be obvious and conspicuous links between individual measures and behaviour in marketing. However, when used in proper combination and with the help oftheoretical models personality offers considerable explanatory power as illustrated in the seventy five percent accuracy rate of prediction obtained in binary logistic regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576