3 resultados para Refuse composting
em Cochin University of Science
Resumo:
The rising pressure of Population, together with the constantly changing technologies, and development perspectives, contribute to the ever increasing volumes of wastes in different forms. The solid and liquid wastes generated in the urban areas were considered a burden to the society, and hazardous to the environment. The fact is that the growth of consumerist culture and aimless throwing of refuse by the people created the outbreak of environmental pollution. Unhygienic environment and solid waste accumulation coincided with mosquito breeding which causes, the spread of most epidemics. The rationale behind most of the diseases is the unhygienic pattern followed by the people both in rural and urban areas. As an environmental package, the disposal of solid waste from different sources, such as house holds markets, commercial areas, slaughter houses, hospitals and industries, therefore assumed crucial importance. So as a part of the theory and practice, a study on the area, solid waste management of Arppukara Grama Panchayat of Kottayam district is taken into consideration. The study conducted here proposes, to examine the quality and quantity of the solid waste generated in the panchayat and also it's impact on the existing social, economical, environmental and ecological systems
Resumo:
Spent substrate, the residual material of mushroom cultivation, causes disposal problems for cultivators. Currently the spent substrate of different mushrooms is used mainly for composting. Edible mushrooms of Pleurotus sp. can grow on a wide range of lignocellulosic substrates. In the present study, Pleurotus eous was grown on paddy straw and the spent substrate was used for the production of ethanol. Lignocellulosic biomass cannot be saccharified by enzymes to high yield of ethanol without pretreatment. The root cause for the recalcitrance of lignocellulosic biomass such as paddy straw is the presence of lignin and hemicelluloses on the surface of cellulose. They form a barrier and prevent cellulase from accessing the cellulose in the substrate. In the untreated paddy straw, the amount of hemicelluloses and lignin (in % dry weight) were 20.30 and 20.34 respectively and the total reducing sugar was estimated to be 5.40 mg/g. Extracellular xylanase and ligninases of P. eous could reduce the amount of hemicelluloses and lignin to 16 and 11(% dry weight) respectively, by 21st day of cultivation. Growth of mushroom brought a seven fold increase in the total reducing sugar yield (39.20 mg/g) and six fold increase in the production of ethanol (6.48 g/L) after 48hrs of fermentation, when compared to untreated paddy straw
Resumo:
In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries