7 resultados para Reflection loss
em Cochin University of Science
Resumo:
In this letter, we report flexible, non corrosive, and light weight nickel nanoparticle@multi-walled carbon nanotube–polystyrene (Ni@MWCNT/PS) composite films as microwave absorbing material in the frequency range of S band (2-4 GHz). Dielectric permittivity and magnetic permeability of composites having 0.5 and 1.5 wt. % filler amount were measured using the cavity perturbation technique. Reflection loss maxima of 33 dB (at 2.7 GHz) and 24 dB (at 2.7 GHz) were achieved for 0.5 and 1.5 wt. % Ni@MWCNT/PS composite films of 6 and 4 mm thickness, respectively, suggesting that low concentrations of filler provide significant electromagnetic interference shielding
Resumo:
Flexible and thin single layer microwave absorbers based on strontium ferrite–carbon black–nitrile rubber composites have been fabricated employing a specific recipe and their reflection loss characteristics were studied in the S (2–4 GHz) and X-bands (8–12 GHz). The incorporation of carbon black not only reinforces the rubber by improving the mechanical properties of the composite but also modifies the dielectric permittivity of the composite. Strontium ferrite when impregnated into a rubber matrix imparts the required magnetic permeability to the composite. The combination of strontium ferrite and carbon black can then be employed to tune the microwave absorption characteristics of the resulting composite. The complex dielectric permittivity and permeability were measured by employing a cavity perturbation technique. The microwave absorption characteristics of composites were modelled in that an electromagnetic wave incident normally on the metal terminated single layer absorber. The influence of filler volume fraction, frequency, absorber thickness on the bandwidth of absorption are discussed and correlated
Resumo:
Nickel–rubber nanocomposites were synthesized by incorporating ferromagnetic nickel nanoparticles in a natural rubber as well as neoprene rubber matrix. Complex dielectric permittivity and magnetic permeability of these composites were evaluated in the X-band microwave frequencies at room temperature using cavity perturbation technique. The dielectric loss in natural rubber is smaller compared to neoprene rubber. A steady increase in the dielectric permittivity is observed with increase in the content of nickel in both the composites. The magnetic permeability exhibits a steady decrease with increase in frequency and magnetic loss shows a relaxation at 8 GHz. The suitability of these composites as microwave absorbers is modeled based on the reflection loss which is dependant on the real and imaginary components of the complex dielectric permittivity and magnetic permeability.
Resumo:
Flexile single layer electromagnetic wave absorbers were designed by incorporating appropriate amounts of carbon black in a nitrile butadiene rubber matrix along with an optimized amount of magnetic counterpart, namely, barium hexaferrite for applications in S, C, and X-bands. Effective dielectric permittivity and magnetic permeability were measured using cavity perturbation method in the frequency range of 2–12 GHz. The microwave absorbing characteristics of the composites were studied in the S, C, and X-bands employing a model in which an electromagnetic wave is incident normally on a metal terminated single layer. Reflection loss exceeding 20 dB is obtained for all the samples in a wide frequency range of 2–12 GHz when an appropriate absorber thickness between 5 and 9mm is chosen. The impact of carbon black is clearly observed in the optimized composites on the mechanical strength, thickness, band width of absorption, dielectric properties,
Resumo:
A trapezoidal strip grating surface that eliminates specular reflections almost over the entire X -band frequency range for TM polarization is reported This new grating structure overcomes the bandwidth limitation of conventional rectangular strip grating surfaces