6 resultados para Recurrence quantification analysis

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hazards associated with major accident hazard (MAH) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identitication and quantification of the hazards associated with chemical industries. This research work presents the results of a consequence analysis carried out to assess the damage potential of the hazardous material storages in an industrial area of central Kerala, India. A survey carried out in the major accident hazard (MAH) units in the industrial belt revealed that the major hazardous chemicals stored by the various industrial units are ammonia, chlorine, benzene, naphtha, cyclohexane, cyclohexanone and LPG. The damage potential of the above chemicals is assessed using consequence modelling. Modelling of pool fires for naphtha, cyclohexane, cyclohexanone, benzene and ammonia are carried out using TNO model. Vapor cloud explosion (VCE) modelling of LPG, cyclohexane and benzene are carried out using TNT equivalent model. Boiling liquid expanding vapor explosion (BLEVE) modelling of LPG is also carried out. Dispersion modelling of toxic chemicals like chlorine, ammonia and benzene is carried out using the ALOHA air quality model. Threat zones for different hazardous storages are estimated based on the consequence modelling. The distance covered by the threat zone was found to be maximum for chlorine release from a chlor-alkali industry located in the area. The results of consequence modelling are useful for the estimation of individual risk and societal risk in the above industrial area.Vulnerability assessment is carried out using probit functions for toxic, thermal and pressure loads. Individual and societal risks are also estimated at different locations. Mapping of threat zones due to different incident outcome cases from different MAH industries is done with the help of Are GIS.Fault Tree Analysis (FTA) is an established technique for hazard evaluation. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. However it is often difficult to estimate precisely the failure probability of the components due to insufficient data or vague characteristics of the basic event. It has been reported that availability of the failure probability data pertaining to local conditions is surprisingly limited in India. This thesis outlines the generation of failure probability values of the basic events that lead to the release of chlorine from the storage and filling facility of a major chlor-alkali industry located in the area using expert elicitation and proven fuzzy logic. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor invo1ved in expert elicitation .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis entitled Reliability Modelling and Analysis in Discrete time Some Concepts and Models Useful in the Analysis of discrete life time data.The present study consists of five chapters. In Chapter II we take up the derivation of some general results useful in reliability modelling that involves two component mixtures. Expression for the failure rate, mean residual life and second moment of residual life of the mixture distributions in terms of the corresponding quantities in the component distributions are investigated. Some applications of these results are also pointed out. The role of the geometric,Waring and negative hypergeometric distributions as models of life lengths in the discrete time domain has been discussed already. While describing various reliability characteristics, it was found that they can be often considered as a class. The applicability of these models in single populations naturally extends to the case of populations composed of sub-populations making mixtures of these distributions worth investigating. Accordingly the general properties, various reliability characteristics and characterizations of these models are discussed in chapter III. Inference of parameters in mixture distribution is usually a difficult problem because the mass function of the mixture is a linear function of the component masses that makes manipulation of the likelihood equations, leastsquare function etc and the resulting computations.very difficult. We show that one of our characterizations help in inferring the parameters of the geometric mixture without involving computational hazards. As mentioned in the review of results in the previous sections, partial moments were not studied extensively in literature especially in the case of discrete distributions. Chapters IV and V deal with descending and ascending partial factorial moments. Apart from studying their properties, we prove characterizations of distributions by functional forms of partial moments and establish recurrence relations between successive moments for some well known families. It is further demonstrated that partial moments are equally efficient and convenient compared to many of the conventional tools to resolve practical problems in reliability modelling and analysis. The study concludes by indicating some new problems that surfaced during the course of the present investigation which could be the subject for a future work in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.