39 resultados para Rare earth exchanged Na–Y zeolites

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth exchanged Na–Y zeolites, H-mordenite, K-10 montmorillonite clay and amorphous silica-alumina were effectively employed for the continuous synthesis of nitriles. Dehydration of benzaldoxime and 4-methoxybenzaldoxime were carried out on these catalysts at 473 K. Benzonitrile (dehydration product) was obtained in near quantitative yield with benzaldoxime whereas; 4-methoxybenzaldoxime produces both Beckmann rearrangement (4-methoxyphenylformamide) as well as dehydration products (4-methoxy benzonitrile) in quantitative yields. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream (TOS) studies show decline in the activity of the catalysts due to neutralization of acid sites by the basic reactant and product molecules and water formed during the dehydration of aldoximes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimethylacetals of ketones; cyclohexanone, acetophenone, and benzophenone have been prepared by reacting ketones with methanol under mild reaction conditions. Large pore zeolites (H-Y and its rare earth metal, Ce3+, La3+, and RE3+ modified forms), and mesoporous clay (K-10 montmorillonite and its cerium exchanged counterpart) with regular pore structure, silica and silica-alumina have been used as catalysts. Clay catalysts are found to be much more active than zeolites, thanks to slightly bigger pore size. The nature of the pores of the solid acid catalysts determine acetalization efficiency of a particular catalyst. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolites than over the clays. Carrying out the reaction with ketones of different molecular sizes it is shown that K-10 clays and rare earth exchanged H-Y zeolites are promising environmentally friendly catalysts for their use in the production fine chemicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lewis acidity of yttrium and dysprosium exchanged zeolite Y and ZSM-5 has been determined by titration method using Hammett indicators. The acidity of the Y form increases with increase in concentration of the rare earth cation in the Y zeolite. It is independent of the amount of the rare earth ion for ZSM-5. The data have been correlated with the activity of these zeolites for the esterification of butanol using acetic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel application of solid acid catalysts in the Beckmann rearrangement of E,E-cinnamaldoxime in the synthesis of an important heterocyclic compound; isoquinoline is reported. E,E-Cinnamaldoxime under ambient reaction conditions on zeolite catalysts underwent Beckmann rearrangement to produce isoquinoline in yields of ca. 86–95%. Cinnamonitrile and cinnamaldehyde were formed as by-products. LaH-Y zeolite produces maximum amount of the desired product (yield 95.6%). However, the catalysts are susceptible for deactivation due to the basic nature of the reactants and products, which neutralize the active sites. H-Y zeolite is more susceptible (22% deactivation in 10 h) for deactivation compared to the cerium-exchanged counterpart (18% deactivation in 10 h). Thus, the optimal protocol allows isoquinoline to be synthesised in excellent yields through the Beckmann rearrangement of cinnamaldoxime. The reaction is simple, effective, does not involve any other additives, and environmentally benign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acidity of the various rare-earth exchanged zeolite-Y catalysts has been examined by titration method using Hammett indicators and is correlated with the catalytic activity of the samples in the benzylation of 0-xylene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of residual cations in rare earth metal modified faujasite–Y zeolite has been monitored using magic angle spinning NMR spectral analysis and catalytic activity studies. The second metal ions being used are Na+, K+ and Mg+. From a comparison of the spectra of different samples, it is concluded that potassium and magnesium exchange causes a greater downfield shift in the 29Si NMR peaks. Also, lanthanum exchanged samples show migration behavior from large cages to small cages, which causes the redistribution of second counter cations. It is also observed that Mg2+ causes the most effective migration of lanthanum ions due to its greater charge. The prepared systems were effectively employed for the alkylation of benzene with 1-octene in the vapor phase. From the deactivation studies it is observed that the as-exchanged zeolites possess better stability towards reaction condition over the pure HFAU zeolite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present work is to improve the textural and structural properties of zeolite-Y through ion exchange with rare earth metals. We meant to obtain a comparative evaluation of the physicochemical properties and catalytic activity of rare earth modified H-Y, Na-Y, K-Y, and Mg-Y zeolites. Friedel-Crafts alkylations of benzene with higher 1- olefins such as 1-octene, 1-decene, and 1dodecene for the synthesis of linear alkylbenzene (LAB) have been selected for the present study. An attempt has also been directed towards the correlation of the enhancement in 2-phenylalkane formation to the improvement in the textural and structural properties upon rare earth modification for the zeolite-Y. The present method for LAB synthesis stands as an effective Green alternative for the existing hydrofluoric acid technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of dimethyl acetals of carbonyl compounds such as cyclohexanone, acetophenone, and benzophenone has successfully been carried out by the reaction between ketones and methanol using different solid acid catalysts. The strong influence of the textural properties of the catalysts such as acid amount and adsorption properties (surface area and pore volume) determine the catalytic activity. The molecular size of the reactants and products determine the acetalization ability of a particular ketone. The hydrophobicity of the various rare earth exchanged Mg–Y zeolites, K-10 montmorillonite clay, and cerium exchanged montmorillonite (which shows maximum activity) is more determinant than the number of active sites present on the catalyst. The optimum number of acidic sites as well as dehydrating ability of Ce3+-montmorillonite and K-10 montmorillonite clays and various rare earth exchanged Mg–Y zeolites seem to work well in shifting the equilibrium to the product side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondestructive photothermal methods as well as optical absorption and fluorescence spectroscopy are utilized to characterise three different materials, both thermally and optically. The possibility of using montmorillonite clay minerals, after textile waste-water treatment, is investigated for further applications. The laser induced luminescence studies and thermal characterisation of certain rare earth titanates prepared by self propagating high temperature synthesis method are also presented. Moreover, effort is made to characterise rare earth doped sol gel silica glasses with the help of these nondestructive techniques.