7 resultados para RESONANCE FREQUENCY-ANALYSIS

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The arrow shaped microstrip antenna, which produces dual frequency dual polarisation operation with considera-ble size reduction compared to conventional patches has been reported [I]. These antennas provide greater area reduction and improved gain compared to drum shaped patches [2]. Prediction of the resonance frequency of drum shaped patches [3] and circular patches for broadband operation [4] are available in the literature. In this Letter, we propose empirical formulas for calculating the resonance frequencies of the arrow shaped microstrip antenna. These antennas can be employed for obtaining dual frequency with the same polarisation, bandwidth enhancement, circular polarisation etc. by varying its different parameters or by introducing slots. The proposed design equations provide an easier and simple way of predicting the resonant frequencies of these patches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition frequency between the thermally thin to thermally thick region from the log–log plot of photoacoustic amplitude versus chopping frequency. Analysis of the data was carried out on the basis of the one-dimensional model of Rosencwaig and Gersho. The present investigation reveals that the sintering temperature has great influence on the propagation of heat carriers and hence on the thermal diffusivity value. The results were interpreted in terms of variations in porosity with sintering temperature as well as with changes in grain size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel cavity perturbation technique using coaxial cavity resonators for the measurement of complex permittivity of liquids is presented. The method employs two types of resonators (Resonator I and Resonator II). Resonator I operates in the frequency range 600 MHz-7 GHz and resonator II operates in the frequency range 4 GHz-14 GHz. The introduction of the capillary tube filled with the sample liquid into the coaxial resonator causes shifts in the resonance frequency and loaded Q-factor of the resonator. The shifts in the resonance frequency and loaded Q-factor are used to determine the real and imaginary parts of the complex permittivity of the sample liquid, respectively. Using this technique, the dielectric parameters of water and nitrobenzene are measured. The results are compared with those obtained using other standard methods. The sources of errors are analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Department of Elecctronics, Cochin University of Science and Technology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coplanar wave guide is an attractive device in microwave integrated circuits due to its uniplanar nature, ease of fabrication and low production cost. Several attempts are already done to explore the radiating modes in coplanar wave guide transmission lines. Usually coplanar wave guides are excited by an SMA connector with its centre conductor connected to the exact middle of the centre strip and the outer ground conductor to the two ground strips. The mode excited on it is purely a bound mode. The E-field distribution in the two slots are out of phase and there for cancels at the far field. This thesis addresses an attempt to excite an in phase E-field distribution in the two slots of the co planar wave guide by employing a feed asymmetry, in order to get radiation from the two large slot discontinuities of the coplanar waveguide. The omni directional distribution of the radiating energy can be achieved by widening the centre strip.The first part of the thesis deals with the investigations on the resonance phenomena of conventional coplanar waveguides at higher frequency bands. Then an offset fed open circuited coplanar waveguide supporting resonance/radiation phenomena is analyzed. Finally, a novel compact co planar antenna geometry with dual band characteristics, suitable for mobile terminal applications is designed and characterized using the inferences from the above study.