4 resultados para RECOMBINANT SEQUENCES

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 80 years ago, the neurosecretory eyestalk structures and their role in endocrine regulation was recognized in crustaceans. After the recognition it took half a century to identify the first peptide hormone. Till date a large number of homologous peptides of crustacean hyperglycaemic hormone and moult-inhibiting hormone have been identified, consequently they are called the CHH family hormones. This family comprises of highly multifunctional peptides which according to sequences and precursor structures can be divided into two subfamilies, type-I (CHH/ITP) and II (MIH, MOIH, VIH/GIH) (Webster et al., 2012). The XO-SG complex has been the major site of the two subfamilies. The advent of molecular techniques resulted in the characterization of different precursors of CHH, MIH and GIH; these hormones consist of a signal peptide, but only the preprohormone of CHHs contain a precursor- related peptide (CPRP) located between the signal and the mature hormone (Weidemann et al., 1989; Klein et al., 1993b; De Kleijn and Van Herp, 1995). The essentialities of the gene structure comply with the functions of the CHH family hormones. The CHH family hormone functions are inhibitory as well as stimulatory in the process of reproduction and maturation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil community genomics or metagenomics is employed in this study to analyze the evolutionary related - ness of mangrove microbial community. The metagenomic DNA was isolated from mangrove sediment and 16SrDNA was amplified using universal primers. The amplicons were ligated into pTZ57R/T cloning vector and transformed onto E. coli JM109 host cells. The recombinant plasmids were isolated from positive clones and the insert was confirmed by its reamplification. The amplicons were subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) using three different tetra cutter restriction enzymes namely Sau3A1, Hha1 and HpaII. The 16SrDNA insert were sequenced and their identity was determined. The sequences were submitted to NCBI database and accession numbers obtained. The phylo - genetic tree was constructed based on Neighbor-Joining technique. Clones belonged to two major phyla of the bacterial domain, namely Firmicutes and Proteobacteria, with members of Firmicutes predominating. The microbial diversity of the mangrove sediment was explored in this manner.