17 resultados para Récepteurs GABA

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABAergic alterations in hypothalamus during compensatory hyperplasia after partial hepatectomy (PH), lead nitrate (LN) induced direct hyperplasia and N-nitrosodiethylamine (NDEA) induced neoplasia in liver were investigated. Serum GABA levels were increased in all 3 experimental groups compared with the control. GABA content decreased in hypothalamus of PH and NDEA treated rats, while it increased in LN treated rats. GABAA receptor number and affinity in hypothalamic membrane preparations of rats showed a significant decrease in PH and NDEA treated rats, while in LN treated rats the affinity increased without any change in the receptor number. The GABAB receptor number increased in PH and NDEA treated rats, while it decreased in LN treated rats. The affinity of the receptor also increased in NDEA treated rats. Plasma NE levels showed significant increase in PH and NDEA rats compared with the control while it decreased in LN treated rats. The results of the present study suggests that liver cell proliferation is influencing the hypothalamic GABAergic neurotransmission and these changes regulate the hepatic proliferation through the sympathetic stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was designed to investigate the protective effect of glucose, oxygen and epinephrine resuscitation on impairment in the functional role of GABAergic, serotonergic, muscarinic receptors, PLC, BAX, SOD, CAT and GPx expression in the brain regions of hypoxia induced neonatal rats. Also, the role of hormones - Triiodothyronine (T3) and insulin, second messengers – cAMP, cGMP and IP3 and transcription factors – HIF and CREB in the regulation of neonatal hypoxia and its resuscitation methods were studied. Behavioural studies were conducted to evaluate the motor function and cognitive deficit in one month old control and experimental rats. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The sequence of glucose, epinephrine and oxygen administration at the molecular level is an important aspect of the study. The additive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures by initial supply of glucose to hypoxic neonatal rats showed from the molecular study when brought to practice will lead to healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the effects of 5-HT, GABA and Bone Marrow Cells infused intranigrally to substantia nigra individually and in combinations on unilateral rotenone infused Parkinsonism induced rats. Scatchard analysis of DA, DA D1 and D2 receptors in the corpus striatum, cerebral cortex, cerebellum, brain stem and hippocampus showed a significant increase in the Brain regions of rotenone infused rat compared to control. Real Time PCR amplification of DA D1, D2, Bax and ubiquitin carboxy-terminal hydrolase were up regulated in the brain regions of rotenone infused rats compared to control. Gene expression studies of -Synuclien, cGMP and Cyclic AMP response element-binding protein showed a significant down regulation in Rotenone infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies.Our study demonstrated that BMC administration alone cannot reverse the above said molecular changes occurring in PD rat. 5-HT and GABA acting through their specific receptors in combination with bone marrow cells play a crucial role in the functional recovery of PD rats. 5-HT, GABA and Bone marrow cells treated PD rats showed significant reversal to control in DA receptor binding and gene expression. 5-HT and GABA have co-mitogenic property. Proliferation and differentiation of cells re-establishing the connections in Parkinson's disease facilitates the functional recovery. Thus, it is evident that 5-HT and GABA along with BMC to rotenone infused rats renders protection against oxidative, related motor and cognitive deficits which makes them clinically significant for cellbased therapy. The BMC transformed to neurons when co-transplanted with 5-HT and GABA which was confirmed with PKH2GL and nestin. These newly formed neurons have functional significance in the therapeutic recovery of Parkinson’s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gamma amino outyric acid is a major inhibitory neurotrarsr titter in the central nervous system. In the preset study sv, Have investigate(' the alteration of GABA receptor, In t he hrain stem of rats during pancreatic regeneration. Three groups of rats were used for the study: sham operated, 72 It and 7 days partially pancreatectonnsea. GABA was (juan- (ified by [H]GABA receptor iispiacement method. GABA receptor kin: 10, pat at i et•ers were studied by using the binding of F'.](iAhA as ligand to the Triton X-100 treated me,i1,;-:mes a1,J displacement with unlabelled GABA. GhRA,v receptor activity was studied by using the [` -1 h3cuculline and displacement with unlabellecV euculline. ;.\13A content significantly decreased (1' < (1.(101 ) it, 0-e brain stern during the regeneration of pancreas. 'I hl, high affinity (IAI3A receptor binding sho?:ed it sigii'f cant decrease in 131„.,\ (P < 11.01) and K,I 1).05) n 72 h and 7 days after partial pancreatee 'timv. ";:flhicuculline hin(Iing showed it signih eat, 'le ( r(, :,e in /Jn1,s and K,I (P < 0.001) in 72 h pa^.rcreaw,, mised rats when compared with sham wt--tt' as P,n and K,I reversed to near sham after 7 da,s of pancreatectomv. The results sugge,) that GAB A throur,r; ('GABA receptors in brain Atcem has a regulatory uie during active regeneration of pancreas which will have inunense clinical significance in the treatment of cliahetcs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gamma aminohutyric acid (GAB A.) receptor tunctionaI status was artaIV se(l in pa It ial hcpatcctoIn ised.II'II). lead nitrate (LN) induced hyperplastic and N-nifrosodiethylantinc INDEAI treated nctplastic rat Iivers during peak DNA synthesis. The high-affinity I'HJGALA binding significantly decreased in PII and NDEi\ rats and the receptor affinity decreased in NDEA and increased in LN rats compared with control . in NDEA. displacement analysis of I'I IIGABA with muscimol showed loss of low-allinity site and a shill of high-allinity cite towards low-allinity . ' 1 he affinity sites shifted towards high-affinity in LN rats. 'file number of low-allinity 1'I Ilhicuc)lline receptors decreased cignilic:uttly in NDEA and I'll whereas it increased in LN rats. (ir\Bi\t receptor :gunist. unrscinrul. disc dependcnllyinhihilcd epidermal growth factor IEGI--) induced DNA synthesis :uul enhanced the tr:utsfnrnting grmvth )actor (Il I I'(il (tlI mediated DNA synthesis suppression in prim:uy hepalucvte cultures . Our results suggest that GABA,t reccjhtor act as an inhibitory signal fur hepatic cell prolifctatiun.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyridoxal phosphate (PLP) is the coenzyme of various decarboxylases involved in the formation of monoamine urotransmitters such as y-aminobulyric acid (GAE3A), serotonin (5-HT) and dopamine. 1-lowever; in the pyridoxine-deficient rats GABA and 5-HT are decreased in various brain areas including the hypothalamus, with no change in the catecholamine levels. Serotonin and GABA are known to be involved in blood pressure control mechanisms. In this study adult Sprague-Dawley rats placed on a pyridoxine-deficient diet for 8 weeks showed significant hypertension compared with pyridoxine-supplemented controls. This was associated with a general sympathetic stimulation. Treatment of deficient rats with a single dose of pyridoxine (10 mg/kg body weight) reversed the blood pressure to normal levels within 24 h, with concomitant restoration of hypothalamic 5-HT and GABA, as well as the return of plasma norepinephrine to nornr;l levels. The results indicate that there is a cause-and-effect relationship between pyridoxine deficiency and hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-affinity of [3H]y-aminobutyric acid (GABA) to GABAA receptors and [3H]baclofen to GABAB receptors were studied in the cerebellum of pyridoxine-deficient rats and compared to pyridoxine-supplemented controls. There was a significant increase in the maximal binding ( Bmax) of both GABAA and GABAB receptors with no significant difference in their binding affinities (Kd). The changes observed suggest a supersensitivity of GABAA and GABAB receptors which seems to correlate negatively with the concentration of GABA in the cerebellum of pyridoxine-deficient rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent developments in neurobiology have rendered new prominence and potential to study about the structure and function of brain and related disorders. Human behaviour is the net result of neural control of the communication between brain cells. Neurotransmitters are chemicals that are used to relay, amplify and modulate electrical signals between neurons and/or another cell. It mediates rapid intercellular communication through the nervous system by interacting with cell surface receptors. These receptors often trigger second messenger signaling pathways that regulate the activity of ion channels. The functional balance of different neurotransmitters such as Acetylcholine (Ach), Dopamine (DA), Serotonin (5-HT), Norepinephrine (NE), Epinephrine (EPI), Glutamate and Gamma amino butyric acid (GABA) regulates the growth, division and other vital functions of a normal cell / organism (Sudha, 1998). Any change in neurotransmitters' functional balance will result in the failure of cell function and may lead to the occurrence of diseases. Abnormalities in the production or functioning of neurotransmitters have been implicated in a number of neurological disorders like Schizophrenia, Alzheimer's, Epilepsy, Depression and Parkinson's disease. Changes in central and peripheral neuronal signaling system is also noted in diabetes, cancer, cell proliferation, alcoholism and aging. Elucidation of neurotransmitters receptor interaction pathways and gene expression regulation by second messengers and transcriptional factors in health and disease conditions can lead to new small molecules for development of therapeutic agents to improve neurological disease conditions. Increased awareness of the global effects of neurological disorders should help health care planners and the neurological community set appropriate priorities in research, prevention, and management of these diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia in neonates can lead to biochemical and molecular alterations mediated through changes in neurotransmitters resulting in permanent damage to brain. In this study, we evaluated the changes in the receptor status of GABAA in the cerebral cortex and brainstem of hypoxic neonatal rats and hypoxic rats supplemented with glucose and oxygen using binding assays and gene expression of GABAAa1 and GABAAc5. In the cerebral cortex and brainstem of hypoxic neonatal rats, a significant decrease in GABAA receptors was observed, which accounts for the respiratory inhibition. Hypoxic rats sup- plemented with glucose alone and with glucose and oxygen showed, respectively, a reversal of the GABAA receptors, andGABAAa1 and GABAAc5 gene expression to control. Glucose acts as an immediate energy source thereby reducing the ATP-depletion-induced increase in GABA and oxygenation, which helps in encountering anoxia. Resuscitation with oxygen alone was less effective in reversing the receptor alterations. Thus, the results of this study suggest that reduction in the GABAA receptors functional regulation during hypoxia plays an important role in mediating the brain damage. Glucose alone and glucose and oxygen supplementation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study demonstrate the functional alterations of the GABAA and GABAB receptors and the gene expression during the regeneration of pancreas following partial pancreatectomy. The role of these receptors in insulin secretion and pancreatic DNA synthesis using the specific agonists and antagonists also are studied in vitro. The alterations of GABAA and GABAR receptor function and gene expression in the brain stem, crebellum and hypothalamus play an important role in the sympathetic regulation of insulin secretion during pancreatic regeneration. Previous studies have given much information linking functional interaction between GABA and the peripheral nervous system. The involvement of specific receptor subtypes functional regulation during pancreatic regeneration has not given emphasis and research in this area seems to be scarce. We have observed a decreased GABA content, down regulation of GABAA receptors and an up regulation of GABAB receptors in the cerebral cortex, brain stem and hypothalamus. Real Time-PCR analysis confirmed the receptor data in the brain regions. These alterations in the GABAA and GABAB receptors of the brain are suggested to govern the regenerative response and growth regulation of the pancreas through sympathetic innervation. In addition, receptor binding studies and Real Time-PCR analysis revealed that during pancreatic regeneration GABAA receptors were down regulated and GABAB receptors were up regulated in pancreatic islets. This suggests an inhibitory role for GABAA receptors in islet cell proliferation i.e., the down regulation of this receptor facilitates proliferation. Insulin secretion study during 1 hour showed GABA has inhibited the insulin secretion in a dose dependent manner in normal and hyperglycaemic conditions. Bicuculline did not antagonize this effect. GABAA agonist, muscimol inhibited glucose stimulated insulin secretion from pancreatic islets except in the lowest concentration of 1O-9M in presence of 4mM glucose.Musclmol enhanced insulin secretion at 10-7 and 10-4M muscimol in presence of 20mM glucose- 4mM glucose represents normal and 20mM represent hyperglycaemic conditions. GABAB agonist, baclofen also inhibited glucose induced insulin secretion and enhanced at the concentration of 1O-5M at 4mM glucose and at 10-9M baclofen in presence of 20mM glucose. This shows a differential control of the GABAA and GABAB receptors over insulin release from the pancreatic islets. During 24 hours in vitro insulin secretion study it showed that low concentration of GABA has inhibited glucose stimulated insulin secretion from pancreatic islets. Muscimol, the GABAA agonist, inhibited the insulin secretion but, gave an enhanced secretion of insulin in presence of 4mM glucose at 10-7 , 10-5 and 1O-4M muscimol. But in presence of 20mM glucose muscimol significantly inhibited the insulin secretion. GABAB agonist, baclofen also inhibited glucose induced insulin secretion in presence of both 4mM and 20mM glucose. This shows the inhibitory role of GABA and its specific receptor subtypes over insulin synthesis from pancreatic bete-islets. In vitro DNA synthesis studies showed that activation of GABAA receptor by adding muscimol, a specific agonist, inhibited islet DNA synthesis. Also, the addition of baclofen, a specific agonist of GABAB receptor resulted in the stimulation of DNA synthesis.Thus the brain and pancreatic GABAA and GABAB receptor gene expression differentially regulates pancreatic insulin secretion and islet cell proliferation during pancreatic regeneration. This will have immense clinical significance in therapeutic applications in the management of Diabetes mellitus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, a detailed investigation on the alterations of muscarinic M1, M3, α7 nicotinic acetylcholine receptor (α7 nAchR), GABA receptors and its subtypes; GABAAα1 and GABAB in the brain regions of streptozotocin induced diabetic and insulin induced hypoglycemic rats were carried out. Gene expression of acetylcholine esterase (AChE), choline acetyltransferase (ChAT), GAD, GLUT3, Insulin receptor, superoxide dismutase (SOD), Bax protein, Phospholipase C and CREB in hypoglycemic and hyperglycemic rat brain were studied. Muscarinic M1, M3 receptors, AChE, ChAT, GABAAα1, GABAB, GAD, Insulin receptor, SOD, Bax protein and Phospholipase C expression in pancreas was also carried out. The molecular studies on the CNS and PNS damage will elucidate the therapeutic role in the corrective measures of the damage to the brain during hypoglycemia and hyperglycemia.