7 resultados para Quotient Singularities

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fuzzy set theory has a wider scope of applicability than classical set theory in solving various problems. Fuzzy set theory in the last three decades as a formal theory which got formalized by generalizing the original ideas and concepts in classical mathematical areas and as a very powerful modeling language, that can cope with a large fraction of uncertainties of real life situations. In Intuitionistic Fuzzy sets a new component degree of non membership in addition to the degree of membership in the case of fuzzy sets with the requirement that their sum be less than or equal to one. The main objective of this thesis is to study frames in Fuzzy and Intuitionistic Fuzzy contexts. The thesis proved some results such as ifµ is a fuzzy subset of a frame F, then µ is a fuzzy frame of F iff each non-empty level subset µt of µ is a subframe of F, the category Fuzzfrm of fuzzy frames has products and the category Fuzzfrm of fuzzy frames is complete. It define a fuzzy-quotient frame of F to be a fuzzy partition of F, that is, a subset of IF and having a frame structure with respect to new operations and study the notion of intuitionistic fuzzy frames and obtain some results and introduce the concept of Intuitionistic fuzzy Quotient frames. Finally it establish the categorical link between frames and intuitionistic fuzzy topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topology as the product set with a base chosen as all products of open sets in the individual spaces. This topology is known as box topology. The main objective of this study is to extend the concept of box products to fuzzy box products and to obtain some results regarding them. Owing to the fact that box products have plenty of applications in uniform and covering properties, here made an attempt to explore some inter relations of fuzzy uniform properties and fuzzy covering properties in fuzzy box products. Even though the main focus is on fuzzy box products, some brief sketches regarding hereditarily fuzzy normal spaces and fuzzy nabla product is also provided. The main results obtained include characterization of fuzzy Hausdroffness and fuzzy regularity of box products of fuzzy topological spaces. The investigation of the completeness of fuzzy uniformities in fuzzy box products proved that a fuzzy box product of spaces is fuzzy topologically complete if each co-ordinate space is fuzzy topologically complete. The thesis also prove that the fuzzy box product of a family of fuzzy α-paracompact spaces is fuzzy topologically complete. In Fuzzy box product of hereditarily fuzzy normal spaces, the main result obtained is that if a fuzzy box product of spaces is hereditarily fuzzy normal ,then every countable subset of it is fuzzy closed. It also deals with the notion of fuzzy nabla product of spaces which is a quotient of fuzzy box product. Here the study deals the relation connecting fuzzy box product and fuzzy nabla product

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we combine the notions of fuzzy order and fuzzy topology of Chang and define fuzzy ordered fuzzy topological space. Its various properties are analysed. Product, quotient, union and intersection of fuzzy orders are introduced. Besides, fuzzy order preserving maps and various fuzzy completeness are investigated. Finally an attempt is made to study the notion of generalized fuzzy ordered fuzzy topological space by considering fuzzy order defined on a fuzzy subset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this thesis was to extend some basic concepts and results in module theory in algebra to the fuzzy setting.The concepts like simple module, semisimple module and exact sequences of R-modules form an important area of study in crisp module theory. In this thesis generalising these concepts to the fuzzy setting we have introduced concepts of ‘simple and semisimple L-modules’ and proved some results which include results analogous to those in crisp case. Also we have defined and studied the concept of ‘exact sequences of L-modules’.Further extending the concepts in crisp theory, we have introduced the fuzzy analogues ‘projective and injective L-modules’. We have proved many results in this context. Further we have defined and explored notion of ‘essential L-submodules of an L-module’. Still there are results in crisp theory related to the topics covered in this thesis which are to be investigated in the fuzzy setting. There are a lot of ideas still left in algebra, related to the theory of modules, such as the ‘injective hull of a module’, ‘tensor product of modules’ etc. for which the fuzzy analogues are not defined and explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.