13 resultados para Queues
em Cochin University of Science
Resumo:
Queueing system in which arriving customers who find all servers and waiting positions (if any) occupied many retry for service after a period of time are retrial queues or queues with repeated attempts. This study deals with two objectives one is to introduce orbital search in retrial queueing models which allows to minimize the idle time of the server. If the holding costs and cost of using the search of customers will be introduced, the results we obtained can be used for the optimal tuning of the parameters of the search mechanism. The second one is to provide insight of the link between the corresponding retrial queue and the classical queue. At the end we observe that when the search probability Pj = 1 for all j, the model reduces to the classical queue and when Pj = 0 for all j, the model becomes the retrial queue. It discusses the performance evaluation of single-server retrial queue. It was determined by using Poisson process. Then it discuss the structure of the busy period and its analysis interms of Laplace transforms and also provides a direct method of evaluation for the first and second moments of the busy period. Then it discusses the M/ PH/1 retrial queue with disaster to the unit in service and orbital search, and a multi-server retrial queueing model (MAP/M/c) with search of customers from the orbit. MAP is convenient tool to model both renewal and non-renewal arrivals. Finally the present model deals with back and forth movement between classical queue and retrial queue. In this model when orbit size increases, retrial rate also correspondingly increases thereby reducing the idle time of the server between services
Resumo:
Application of Queueing theory in areas like Computer networking, ATM facilities, Telecommunications and to many other numerous situation made people study Queueing models extensively and it has become an ever expanding branch of applied probability. The thesis discusses Reliability of a ‘k-out-of-n system’ where the server also attends external customers when there are no failed components (main customers), under a retrial policy, which can be explained in detail. It explains the reliability of a ‘K-out-of-n-system’ where the server also attends external customers and studies a multi-server infinite capacity Queueing system where each customer arrives as ordinary but can generate into priority customer which waiting in the queue. The study gives details on a finite capacity multi-server queueing system with self-generation of priority customers and also on a single server infinite capacity retrial Queue where the customer in the orbit can generate into a priority customer and leaves the system if the server is already busy with a priority generated customer; else he is taken for service immediately. Arrival process is according to a MAP and service times follow MSP.
Resumo:
This thesis entitled' On Queues with Interruptions and Repeat or Resumption of Service' introduces several new concepts into queues with service interruption. It is divided into Seven chapters including an introductory chapter. The following are keywords that we use in this thesis: Phase type (PH) distribution, Markovian Arrival Process (MAP), Geometric Distribution, Service Interruption, First in First out (FIFO), threshold random variable and Super threshold random variable. In the second chapter we introduce a new concept called the 'threshold random variable' which competes with interruption time to decide whether to repeat or resume the interrupted service after removal of interruptions. This notion generalizes the work reported so far in queues with service interruptions. In chapter 3 we introduce the concept of what is called 'Super threshold clock' (a random variable) which keeps track of the total interruption time of a customer during his service except when it is realized before completion of interruption in some cases to be discussed in this thesis and in other cases it exactly measures the duration of all interruptions put together. The Super threshold clock is OIl whenever the service is interrupted and is deactivated when service is rendered. Throughout this thesis the first in first out service discipline is followed except for priority queues.
Resumo:
In this thesis we have studied a few models involving self-generation of priorities. Priority queues have been extensively discussed in literature. However, these are situations involving priority assigned to (or possessed by) customers at the time of their arrival. Nevertheless, customers generating into priority is a common phenomena. Such situations especially arise at a physicians clinic, aircrafts hovering over airport running out of fuel but waiting for clearance to land and in several communication systems. Quantification of these are very little seen in literature except for those cited in some of the work indicated in the introduction. Our attempt is to quantify a few of such problems. In doing so, we have also generalized the classical priority queues by introducing priority generation ( going to higher priorities and during waiting). Systematically we have proceeded from single server queue to multi server queue. We also introduced customers with repeated attempts (retrial) generating priorities. All models that were analyzed in this thesis involve nonpreemptive service. Since the models are not analytically tractable, a large number of numerical illustrations were produced in each chapter to get a feel about the working of the systems.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
In this thesis we have introduced and studied the notion of self interruption of service by customers. Service interruption in queueing systems have been extensively discussed in literature (see, Krishnamoorthy, Pramod and Chakravarthy [38]) for the most recent survey. So far all work reported deal with cases in which service interruptions are generated by sources other than customers. However, there are situations where interruptions are due to the customers rather than the system. Such situations are especially arise at doctors clinic, banks, reservation counter etc. Our attempt is to quantify a few of such problems. Systematically we have proceed from single server queue (in Chapter 2) to multi-server queues (Chapter 3). In Chapte 4, we have studied a very general multiserver queueing model with service interruption and protection of service phases. We also introduced customer interruption in a retrial setup (in Chapter 5). All models (from Chapter 2 to Chapter 4) that were analyzed involve 'non-preemptive priority' for interrupted customers where as in the model discussed in Chapter 5 interruption of service by customers is not encouraged. So the interrupted customers cannot access the server as long as there are primary customers in the system. In Chapter 5 we have obtained an explicit expression for the stability condition of the system. In all models analyzed in this thesis, we have assumed that no more than one interruption is allowed for a customer while in service. Since the models are not analytically tractable, a large number of numerical illustrations were given in each chapter it illustrate the working of the systems. We can extend the models discussed in this thesis to several directions. For example some of the models can be analyzed with both server induced and customer induced interruptions the results for which are not available till date. Another possible extension of work is to the case where there is no bound on the number of interruptions a customer is permitted to have before service completion. More complex is the case where a customer is permitted to have a nite number (K ≥ 2) of We can extend the models discussed in this thesis to several directions.
Resumo:
The thesis entitled Analysis of Some Stochastic Models in Inventories and Queues. This thesis is devoted to the study of some stochastic models in Inventories and Queues which are physically realizable, though complex. It contains a detailed analysis of the basic stochastic processes underlying these models. In this thesis, (s,S) inventory systems with nonidentically distributed interarrival demand times and random lead times, state dependent demands, varying ordering levels and perishable commodities with exponential life times have been studied. The queueing system of the type Ek/Ga,b/l with server vacations, service systems with single and batch services, queueing system with phase type arrival and service processes and finite capacity M/G/l queue when server going for vacation after serving a random number of customers are also analysed. The analogy between the queueing systems and inventory systems could be exploited in solving certain models. In vacation models, one important result is the stochastic decomposition property of the system size or waiting time. One can think of extending this to the transient case. In inventory theory, one can extend the present study to the case of multi-item, multi-echelon problems. The study of perishable inventory problem when the commodities have a general life time distribution would be a quite interesting problem. The analogy between the queueing systems and inventory systems could be exploited in solving certain models.
Resumo:
Cochin University Of Science And Technology
Resumo:
In many situations probability models are more realistic than deterministic models. Several phenomena occurring in physics are studied as random phenomena changing with time and space. Stochastic processes originated from the needs of physicists.Let X(t) be a random variable where t is a parameter assuming values from the set T. Then the collection of random variables {X(t), t ∈ T} is called a stochastic process. We denote the state of the process at time t by X(t) and the collection of all possible values X(t) can assume, is called state space
Resumo:
Queueing Theory is the mathematical study of queues or waiting lines. Queues abound in every day life - in computer networks, in tra c islands, in communication of electro-magnetic signals, in telephone exchange, in bank counters, in super market checkouts, in doctor's clinics, in petrol pumps, in o ces where paper works to be processed and many other places. Originated with the published work of A. K. Erlang in 1909 [16] on congestion in telephone tra c, Queueing Theory has grown tremendously in a century. Its wide range applications includes Operations Research, Computer Science, Telecommunications, Tra c Engineering, Reliability Theory, etc.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
The objective of this thesis is to study the time dependent behaviour of some complex queueing and inventory models. It contains a detailed analysis of the basic stochastic processes underlying these models. In the theory of queues, analysis of time dependent behaviour is an area.very little developed compared to steady state theory. Tine dependence seems certainly worth studying from an application point of view but unfortunately, the analytic difficulties are considerable. Glosod form solutions are complicated even for such simple models as M/M /1. Outside M/>M/1, time dependent solutions have been found only in special cases and involve most often double transforms which provide very little insight into the behaviour of the queueing systems themselves. In inventory theory also There is not much results available giving the time dependent solution of the system size probabilities. Our emphasis is on explicit results free from all types of transforms and the method used may be of special interest to a wide variety of problems having regenerative structure.
Resumo:
This thesis analyses certain problems in Inventories and Queues. There are many situations in real-life where we encounter models as described in this thesis. It analyses in depth various models which can be applied to production, storag¢, telephone traffic, road traffic, economics, business administration, serving of customers, operations of particle counters and others. Certain models described here is not a complete representation of the true situation in all its complexity, but a simplified version amenable to analysis. While discussing the models, we show how a dependence structure can be suitably introduced in some problems of Inventories and Queues. Continuous review, single commodity inventory systems with Markov dependence structure introduced in the demand quantities, replenishment quantities and reordering levels are considered separately. Lead time is assumed to be zero in these models. An inventory model involving random lead time is also considered (Chapter-4). Further finite capacity single server queueing systems with single/bulk arrival, single/bulk services are also discussed. In some models the server is assumed to go on vacation (Chapters 7 and 8). In chapters 5 and 6 a sort of dependence is introduced in the service pattern in some queuing models.