8 resultados para Quantum Kinetic-theory

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In classical field theory, the ordinary potential V is an energy density for that state in which the field assumes the value ¢. In quantum field theory, the effective potential is the expectation value of the energy density for which the expectation value of the field is ¢o. As a result, if V has several local minima, it is only the absolute minimum that corresponds to the true ground state of the theory. Perturbation theory remains to this day the main analytical tool in the study of Quantum Field Theory. However, since perturbation theory is unable to uncover the whole rich structure of Quantum Field Theory, it is desirable to have some method which, on one hand, must go beyond both perturbation theory and classical approximation in the points where these fail, and at that time, be sufficiently simple that analytical calculations could be performed in its framework During the last decade a nonperturbative variational method called Gaussian effective potential, has been discussed widely together with several applications. This concept was described as a means of formalizing our intuitive understanding of zero-point fluctuation effects in quantum mechanics in a way that carries over directly to field theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Black hole's response to external perturbations will carry significant information about these exotic objects. Its response, shortly after the initial `kick', is known to be ruled by the damped oscillation of the perturbating eld, called quasinormal modes(QNMs), followed by the tails of decay and is the characteristic of the background black hole spacetime. In the last three decades, several shortcomings came out in the Einstein's General Theory of Relativity(GTR). Such issues come, especially, from observational cosmology and quantum eld theory. In the rst case, for example, the observed accelerated expansion of the universe and the hypothesized mysterious dark energy still lack a satisfactory explanation. Secondly, GTR is a classical theory which does not work as a fundamental theory, when one wants to achieve a full quantum description of gravity. Due to these facts modi cation to GTR or alternative theories for gravity have been considered. Two potential approaches towards these problems are the quintessence model for dark energy and Ho rava-Lifshitz(HL) gravity. Quintessence is a dynamical model of dark energy which is often realized by scalar eld mechanism. HL gravity is the recently proposed theory of gravity, which is renormalizable in power counting arguments. The two models are considered as a potential candidate in explaining these issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis presents the dynamics of a polymer chain under tension. It includes existing theories of polymer fracture, important theories of reaction rates, the rate using multidimensional transition state theory and apply it to the case of polyethylene etc. The main findings of the study are; the life time of the bond is somewhat sensitive to the potential lead to rather different answers, for a given potential a rough estimate of the rate can be obtained by a simples approximation that considers the dynamics of only the bond that breaks and neglects the coupling to neighboring bonds. Dynamics of neighboring bonds would decrease the rate, but usually not more than by one order of magnitude, for the breaking of polyethylene, quantum effects are important only for temperatures below 150K, the lifetime strongly depends on the strain and as the strain varies over a narrow range, the life varies rapidly from 105 seconds to 10_5 seconds, if we change one unit of the polymer by a foreign atom, say by one sulphure atom, in the main chain itself, by a weaker bond, the rate is found to increase by orders of magnitude etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.