8 resultados para Quantile autoregression
em Cochin University of Science
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
Quantile functions are efficient and equivalent alternatives to distribution functions in modeling and analysis of statistical data (see Gilchrist, 2000; Nair and Sankaran, 2009). Motivated by this, in the present paper, we introduce a quantile based Shannon entropy function. We also introduce residual entropy function in the quantile setup and study its properties. Unlike the residual entropy function due to Ebrahimi (1996), the residual quantile entropy function determines the quantile density function uniquely through a simple relationship. The measure is used to define two nonparametric classes of distributions
Resumo:
Di Crescenzo and Longobardi (2002) introduced a measure of uncertainty in past lifetime distributions and studied its relationship with residual entropy function. In the present paper, we introduce a quantile version of the entropy function in past lifetime and study its properties. Unlike the measure of uncertainty given in Di Crescenzo and Longobardi (2002) the proposed measure uniquely determines the underlying probability distribution. The measure is used to study two nonparametric classes of distributions. We prove characterizations theorems for some well known quantile lifetime distributions
Resumo:
In the present paper, we introduce a quantile based Rényi’s entropy function and its residual version. We study certain properties and applications of the measure. Unlike the residual Rényi’s entropy function, the quantile version uniquely determines the distribution
Resumo:
Partial moments are extensively used in literature for modeling and analysis of lifetime data. In this paper, we study properties of partial moments using quantile functions. The quantile based measure determines the underlying distribution uniquely. We then characterize certain lifetime quantile function models. The proposed measure provides alternate definitions for ageing criteria. Finally, we explore the utility of the measure to compare the characteristics of two lifetime distributions
Resumo:
Partial moments are extensively used in actuarial science for the analysis of risks. Since the first order partial moments provide the expected loss in a stop-loss treaty with infinite cover as a function of priority, it is referred as the stop-loss transform. In the present work, we discuss distributional and geometric properties of the first and second order partial moments defined in terms of quantile function. Relationships of the scaled stop-loss transform curve with the Lorenz, Gini, Bonferroni and Leinkuhler curves are developed
Resumo:
Dept. of Statistics, CUSAT