7 resultados para Pump power
em Cochin University of Science
Resumo:
The transient characteristics of an erbium-doped fiber (F.DF) laser, which can switch between wavelengths. are investigated. 77te laser has a set of coupled linear cavities. The slow gain dynamics of EDFs and the cross-gain saturation in the coupled cavities give rise to delayed switching responses and relocation oscillations, which are respertively measured to be l ins and 3.5 ms for the worst rase, and which mar be decreased by increasing the pump power. Thus, the switching speed of the laser may be higher than 100 Hz
Resumo:
Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene.
Resumo:
Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene
Resumo:
The dual-beam thermal lens technique has been found to be very effective for the measurement of fluorescence quantum yields of dye solutions. The concentration-dependence of the quantum yield of rhodamine B in methanol is studied here using this technique. The observed results are in line with the conclusion that the reduction in the quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. The thermal lens has been found to become abberated above 40 mW of pump laser power. This low value for the upper limit of pump power is due to the fact that the medium is a resonantly absorbing one.
Resumo:
The fabrication and characterization of a Rhodamine 6G-doped polymer optical fiber amplifier have been carried out. Two different schemes were employed to characterize the optical fiber: the stripe illumination technique to study the fiber as a gain medium and another technique to study its performance as an amplifier. We observed a spectral narrowing from 42 to 7 nm when the pump energy was increased to 6 mJ in the stripe illumination geometry. A gain of 18 dB was obtained in the amplifier configuration. The effects of pump power and dye concentration on the performance of the fiber as an amplifier were also studied.
Resumo:
We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.
Resumo:
Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.