4 resultados para Production components

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta-glucosidase enzyme purified from the marine fungus, Aspergillus sydowii BTMFS 55 showed a good yield of enzyme production under solid state fermentation. The statistical optimization of the media components revealed that moisture content, concentration of peptone and inoculum are the major parameters which supported the maximal enzyme production. The purified enzyme showed low pH activity and stability, glucose tolerance and activation by ethanol. It could produce ethanol from wheat bran and rice straw by simultaneous saccharification and fermentation with yeast.The glucosidase purified from Aspergillus sydowii BTMFS 55 shows great potential for several biotechnological applications such as the production of bio-ethanol from agricultural biomass and improvement in the aromatic character of wines and fruit juices through the hydrolysis of flavour glucosidic precursors. There is immense scope for the application of this marine fungus in the biofuel production besides in other industries provided further studies are pursued in exploiting this enzyme and the organism particularly scale up studies with respect to application. There is also ample scope for cloning of the gene encoding beta-glucosidase in domesticated hosts such as Pichia pastoris or S. cerevisiae that can produce ethanol directly from cellulosic biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercially, Pleurotus spp. of mushroom are cultivated in bags. After mushroom cultivation, spent substrate remains as residual material. Proper recycling of spent substrate is beneficial for our economy. Spent substrate can be utilized for various other value added purposes through the proper knowledge of its components. Composition of various components depends on the activity of extracellular enzymes in the spent substrate. The present study was conducted to know the enzyme profile of some major extracellular enzymes - cellulase, hemicellulase (xylanase), pectinase and ligninase (lignin peroxidase and laccase) and to estimate cellulose, hemicellulose, pectin and lignin in the substrate. The use of spent substrate as a source of fibre and ethanol, and in the biodegradation of phenol by Pleurotus spp. was also investigated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potential fungal strain producing extracellular β-glucosidase enzyme was isolated from sea water and identified as ^ëéÉêJ Öáääìë=ëóÇçïáá BTMFS 55 by a molecular approach based on 28S rDNA sequence homology which showed 93% identity with already reported sequences of ^ëéÉêÖáääìë=ëóÇçïáá in the GenBank. A sequential optimization strategy was used to enhance the production of β-glucosidase under solid state fermentation (SSF) with wheat bran (WB) as the growth medium. The two-level Plackett-Burman (PB) design was implemented to screen medium components that influence β-glucosidase production and among the 11 variables, moisture content, inoculums, and peptone were identified as the most significant factors for β-glucosidase production. The enzyme was purified by (NH4)2SO4 precipitation followed by ion exchange chromatography on DEAE sepharose. The enzyme was a monomeric protein with a molecular weight of ~95 kDa as determined by SDS-PAGE. It was optimally active at pH 5.0 and 50°C. It showed high affinity towards éNPG and enzyme has a hã and sã~ñ of 0.67 mM and 83.3 U/mL, respectively. The enzyme was tolerant to glucose inhibition with a há of 17 mM. Low concentration of alcohols (10%), especially ethanol, could activate the enzyme. A considerable level of ethanol could produce from wheat bran and rice straw after 48 and 24 h, respectively, with the help of p~ÅÅÜ~êçãóÅÉë=ÅÉêÉîáëá~É in presence of cellulase and the purified β-glucosidase of ^ëéÉêÖáääìë=ëóÇçïáá BTMFS 55.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine yeast have been regarded as safe and showing a beneficial impact on biotechnological process. It provides better nutritional and dietary values indicating their potential application as feed supplements in aquaculture. Brown et al. (1996) evaluated all the marine yeasts characterised with high protein content, carbohydrate, good amino acid composition and high levels of saturated fats. However, there is paucity of information on marine yeasts as feed supplements and no feed formulation has been found either in literature or in market supplemented with them. This statement supported by Zhenming et al. (2006) reported still a lack of feed composed of single cell protein (SCP) from marine yeasts with high content of protein and other nutrients. Recent research has shown that marine yeasts also have highly potential uses in food, feed, medical and biofuel industries as well as marine biotechnology (Chi et al., 2009; 2010). Sajeevan et al. (2006; 2009a) and Sarlin and Philip (2011) demonstrates that the marine yeasts Candida sake served as a high quality, inexpensive nutrient source and it had proven immunostimulatory properties for cultured shrimps. This strain has been made part of the culture collection of National Centre for Aquatic Animal Health, Cochin University of Science and Technology as Candida MCCF 101. Over the years marine yeasts have been gaining increased attention in animal feed industry due to their nutritional value and immune boosting property.Therefore, the present study was undertaken, and focused on the nutritional quality, optimization of large scale production and evaluation of its protective effect on Koi carp from Aeromonas infection