5 resultados para Probe for chromosome translocation
em Cochin University of Science
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus smithii , and fibrin alginolvticus, a Gram- negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smithii was observed . The effect of dye on the samples was also studied in detail.
Resumo:
The radio frequency plasma generated during the sputtering of Indium Tin Oxide target using Argon was analyzed by Langmuir probe and optical-emission spectroscopy. The basic plasma parameters such as electron temperature and ion density were evaluated. These studies were carried out by varying the RF power from 20 to 50 W. A linear increase in ion density and an exponential decrease in electron temperature with rf power were observed. The measured plasma parameters were then correlated with the properties of ITO thin films deposited under similar plasma conditions.
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus .cmithii , and fibrin alginolvticus, a Gram-' negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smitltii was observed . The effect of dye on the samples was also studied in detail.
Resumo:
The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.
Resumo:
In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.