8 resultados para Principal Component Analysis (PCA)
em Cochin University of Science
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
The composition and variability of heterotrophic bacteria along the shelf sediments of south west coast of India and its relationship with the sediment biogeochemistry was investigated. The bacterial abundance ranged from 1.12 x 103 – 1.88 x 106 CFU g-1 dry wt. of sediment. The population showed significant positive correlation with silt (r = 0.529, p< 0.05), organic carbon (OC) (r = 0.679, p< 0.05), total nitrogen (TN) (r = 0.638, p< 0.05), total protein (TPRT) (r = 0.615, p< 0.05) and total carbohydrate (TCHO) (r = 0.675, p< 0.05) and significant negative correlation with sand (r = -0.488, p< 0.05). Community was mainly composed of Bacillus, Alteromonas, Vibrio, Coryneforms, Micrococcus, Planococcus, Staphylococcus, Moraxella, Alcaligenes, Enterobacteriaceae, Pseudomonas, Acinetobacter, Flavobacterium and Aeromonas. BIOENV analysis explained the best possible environmental parameters i.e., carbohydrate, total nitrogen, temperature, pH and sand at 50m depth and organic matter, BPC, protein, lipid and temperature at 200m depth controlling the distribution pattern of heterotrophic bacterial population in shelf sediments. The Principal Component Analysis (PCA) of the environmental variables showed that the first and second principal component accounted for 65% and 30.6% of the data variance respectively. Canonical Correspondence Analysis (CCA) revealed a strong correspondence between bacterial distribution and environmental variables in the study area. Moreover, non-metric MDS (Multidimensional Scaling) analysis demarcated the northern and southern latitudes of the study area based on the bioavailable organic matter
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.
Resumo:
In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest
Resumo:
This article present the result from a study of two sediment cores collected from the environmentally distinct zones of CES. Accumulation status of five toxic metals: Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu) and Lead (Pb) were analyzed. Besides texture and CHNS were determined to understand the composition of the sediment. Enrichment Factor (EF) and Anthropogenic Factor (AF) were used to differentiate the typical metal sources. Metal enrichment in the cores revealed heavy load at the northern (NS1 ) region compared with the southern zone (SS1). Elevation of metal content in core NS1 showed the industrial input. Statistical analyses were employed to understand the origin of metals in the sediment samples. Principal Component Analysis (PCA) distinguishes the two zones with different metal accumulation capacity: highest at NS1 and lowest at SS1. Correlation analysis revealed positive significant relation only in core NS1, adhering to the exposition of the intensified industrial pollution
Resumo:
Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively
Resumo:
A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions