5 resultados para Porous-electrodes
em Cochin University of Science
Resumo:
Dipyrromethene-Cu(II) derivatives possessing two dodecane alkyl chains have been used for the modification of gold electrodes. Electroactive host molecules have been incorporated into a lipophilic dodecanethiol SAM deposited onto gold electrodes through hydrophobic and van der Waals interactions (embedment technique). The presence of dipyrromethene-Cu(II) redox centers on the electrode surface was proved by cyclic voltammetry and Osteryoung square-wave voltammetry. The Au electrodes incorporating redox active Cu(II)-dipyrromethene SAMs were used for the direct voltammetric determination of paracetamol in human plasma.
Resumo:
The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition frequency between the thermally thin to thermally thick region from the log–log plot of photoacoustic amplitude versus chopping frequency. Analysis of the data was carried out on the basis of the one-dimensional model of Rosencwaig and Gersho. The present investigation reveals that the sintering temperature has great influence on the propagation of heat carriers and hence on the thermal diffusivity value. The results were interpreted in terms of variations in porosity with sintering temperature as well as with changes in grain size.
Resumo:
A laser-induced photoacoustic technique was employed to investigate thermal transport through nanocrystalline CePO4 samples prepared via the sol–gel route. Evaluation of thermal diffusivity was carried out using the one-dimensional model of Rosencwaig and Gersho for the reflection configuration of the photoacoustic method. Structural analyses of samples revealed that they are nanoporous in nature, possessing micron-sized grains. Analysis of results shows that thermal diffusivity value varies with sintering temperature. Results are explained in terms of the variation in porosity with sintering temperature and the effects of various scattering mechanisms on the propagation of phonons through the nanoporous ceramic matrix. Further analyses confirm that apart from porosity, grain boundary resistance and interface thermal resistance influence the effective value of thermal diffusivity of the samples under investigation.
Resumo:
The main objective of this thesis work is to optimize the growth conditions for obtaining crystalline and conducting Lao.5Sro.5Co03 (LSCO) and Lao.5Sro.5Coo.5.5Nio.5O3 (LSCNO) thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The thin films were used as electrodes for the fabrication of ferroelectric capacitors using BaO.7SrO.3 Ti03 (BST) and PbZro.52 Tio.4803 (PZT). The structural and transport properties of the La1_xSrxCo03 and Lao.5Sro.5Co1_xNix03 are also investigated. The characterization of the bulk and the thin films were performed using different tools. A powder X-ray diffractometer was used to analyze the crystalline nature of the material. The transport properties were investigated by measuring the temperature dependence of resistivity using a four probe technique. The magnetoresistance and thermoelectric power were also used to investigate the transport properties. Atomic force microscope was used to study the surface morphology and thin film roughness. The ferroelectric properties of the capacitors were investigated using RT66A ferroelectric tester.
Resumo:
In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method. Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications. The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process. Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process. Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays. The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification. The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers. Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs. In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260 Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions. For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia. Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction. SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis. In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR. In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis. In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS. Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261 Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties. Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol. Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol. DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method. DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.