12 resultados para Polynomial Powers of Sigmoid
em Cochin University of Science
Resumo:
This thesis is shows the result of the research work on the inherent Powers of the High Court in criminal jurisdiction. The criminal justice system in India recognizes inherent powers only of the High Court. The Theory and Philosophy of inherent powers are concerned the Distinction between civil and Criminal laws are of very little consequence. In formulating the research programme the confusion created by the concept of inherent powers and its application by High Court form the central point. How fully the concept is understood, how correctly the power is used, and how far it has enhanced the rationale of the administration of criminal justice, what is its importance and what are the solutions for the inherent power to earn a permanent status in the province of criminal jurisprudence are the themes of this study. The precipitation of new dimensions is the yardstick to acknowledge the inherent powers of the High Court and Supreme Court. It is of instant value in criminal justice system. This study concludes innovativeness provided by the inherent powers has helped the justice administration draw inspiration from the Constitution. A jurisprudence of inherent powers has developed with the weilding of inherent powers of the Supreme Court and the High Court. It is to unravel mystery of jurisprudence caused by the operation of the concept of inherent powers this research work gives emphasis. Its significance is all the more relevant when the power is exercised in the administration of criminal justice. Application or non application of inherent powers in a given case would tell upon the maturity and perfection of the standard of justice
Resumo:
Fourier transform methods are employed heavily in digital signal processing. Discrete Fourier Transform (DFT) is among the most commonly used digital signal transforms. The exponential kernel of the DFT has the properties of symmetry and periodicity. Fast Fourier Transform (FFT) methods for fast DFT computation exploit these kernel properties in different ways. In this thesis, an approach of grouping data on the basis of the corresponding phase of the exponential kernel of the DFT is exploited to introduce a new digital signal transform, named the M-dimensional Real Transform (MRT), for l-D and 2-D signals. The new transform is developed using number theoretic principles as regards its specific features. A few properties of the transform are explored, and an inverse transform presented. A fundamental assumption is that the size of the input signal be even. The transform computation involves only real additions. The MRT is an integer-to-integer transform. There are two kinds of redundancy, complete redundancy & derived redundancy, in MRT. Redundancy is analyzed and removed to arrive at a more compact version called the Unique MRT (UMRT). l-D UMRT is a non-expansive transform for all signal sizes, while the 2-D UMRT is non-expansive for signal sizes that are powers of 2. The 2-D UMRT is applied in image processing applications like image compression and orientation analysis. The MRT & UMRT, being general transforms, will find potential applications in various fields of signal and image processing.
Resumo:
Many finite elements used in structural analysis possess deficiencies like shear locking, incompressibility locking, poor stress predictions within the element domain, violent stress oscillation, poor convergence etc. An approach that can probably overcome many of these problems would be to consider elements in which the assumed displacement functions satisfy the equations of stress field equilibrium. In this method, the finite element will not only have nodal equilibrium of forces, but also have inner stress field equilibrium. The displacement interpolation functions inside each individual element are truncated polynomial solutions of differential equations. Such elements are likely to give better solutions than the existing elements.In this thesis, a new family of finite elements in which the assumed displacement function satisfies the differential equations of stress field equilibrium is proposed. A general procedure for constructing the displacement functions and use of these functions in the generation of elemental stiffness matrices has been developed. The approach to develop field equilibrium elements is quite general and various elements to analyse different types of structures can be formulated from corresponding stress field equilibrium equations. Using this procedure, a nine node quadrilateral element SFCNQ for plane stress analysis, a sixteen node solid element SFCSS for three dimensional stress analysis and a four node quadrilateral element SFCFP for plate bending problems have been formulated.For implementing these elements, computer programs based on modular concepts have been developed. Numerical investigations on the performance of these elements have been carried out through standard test problems for validation purpose. Comparisons involving theoretical closed form solutions as well as results obtained with existing finite elements have also been made. It is found that the new elements perform well in all the situations considered. Solutions in all the cases converge correctly to the exact values. In many cases, convergence is faster when compared with other existing finite elements. The behaviour of field consistent elements would definitely generate a great deal of interest amongst the users of the finite elements.
Resumo:
Most adaptive linearization circuits for the nonlinear amplifier have a feedback loop that returns the output signal oj'tne eunplifier to the lineurizer. The loop delay of the linearizer most be controlled precisely so that the convergence of the linearizer should be assured lot this Letter a delay control circuit is presented. It is a delay lock loop (ULL) with it modified early-lute gate and can he easily applied to a DSP implementation. The proposed DLL circuit is applied to an adaptive linearizer with the use of a polynomial predistorter, and the simulalion for a 16-QAM signal is performed. The simulation results show that the proposed DLL eliminates the delay between the reference input signal and the delayed feedback signal of the linearizing circuit perfectly, so that the predistorter polynomial coefficients converge into the optimum value and a high degree of linearization is achieved
Resumo:
The study is a close scrutiny of the process of investigation of offences in India along with an analysis of powers and functions of the investigating agency. The offences, which are prejudicial to sovereignty, integrity and security of the nation or to its friendly relations with foreign states, are generally called the offences against national security. Offences against national security being prejudicial to the very existence of the nation and its legal system, is a heinous and terrible one. As early as 1971 the Law Commission of India had pointed out the need of treating the offences relating to national security and their perpetrators on a totally different procedural footing. The recommendation that, all the offences coming under the said category ought to be brought under the purview of a single enactment so as to confront such offences effectively. The discrepancies in and inadequacies of the criminal justice system in India as much as they are related to the investigations of the offences against national security are examined and the reforms are also suggested. The quality of criminal justice is closely linked with the caliber of the prosecution system and many of the acquittals in courts can be ascribed not only to poor investigations but also to poor quality of prosecution.
Resumo:
Cast Ai-Si alloys are widely used in the automotive, aerospace and general engineering industries due to their excellent combination of properties such as good castability, low coefficient of thermal expansion, high strength-to-weight ratio and good corrosion resistance. The present investigation is on the influence of alloying additions on the structure and properties of Ai-7Si-0.3Mg alloy. The primary objective of this present investigation is to study these beneficial effects of calcium on the structure and properties of Ai-7Si-0.3Mg-xFe alloys. The second objective of this work is to study the effects of Mn,Be and Sr addition as Fe neutralizers and also to study the interaction of Mn,Be,Sr and Ca in Ai-7Si-0.3Mg-xFe alloys. In this study the duel beneficial effects of Ca viz;modification and Fe-neutralization, comparison of the effects of Ca and Sr with common Fe neutralizers. The casting have been characterized with respect to their microstructure, %porosity and electrical conductivity, solidification behaviour and mechanical properties. One of the interesting observations in the present work is that a low level of calcium reduces the porosity compared to the untreated alloy. However higher level of calcium addition lead to higher porosity in the casting. An empirical analysis carried out for comparing the results of the present work with those of the other researchers on the effect of increasing iron content on UTS and % elongation of Ai-Si-Mg and Ai-Si-Cu alloys has shown a linear and an inverse first order polynomial relationships respectively.
Resumo:
Absorption spectra of formaldehyde molecule in the gas phase have been recorded using photoacoustic (PA) technique with pulsed dye laser at various power levels. The spectral profiles at higher power levels are found to be different from that obtained at lower laser powers. Two photon absorption (TPA) is found to be responsible for the photoacoustic signal at higher laser power while the absorption at lower laser power level is attributed to one photon absorption (OPA) process. Probable assignments for the different transitions are given in this paper.
Resumo:
This makes a thorough study of Role of Academic Bodies with Special Reference to the Academic Programmes in the Universities in Kerala. The present study has dealt with the constitution, powers and functions of the authorities of the universities in Kerala, especially the academic bodies which have well-defined powers and function. This thesis gives in detail the role and functions of the academic bodies in the four universities in Kerala, under study: and examines the role-effectiveness of these bodies. To sum up, it can be concluded that the academic bodies in the universities in Kerala do not function as effectively as envisaged in the laws of the universities. They have a maintenance-oriented approach rather than a dynamic one, without thinking in terms of introducing innovations. They need improvement in the various aspects of their constitution, selection of members and their mode of functioning
Resumo:
An attempt is made by the researcher to establish a theory of discrete functions in the complex plane. Classical analysis q-basic theory, monodiffric theory, preholomorphic theory and q-analytic theory have been utilised to develop concepts like differentiation, integration and special functions.
Resumo:
The paper summarizes the design and implementation of a quadratic edge detection filter, based on Volterra series, for enhancing calcifications in mammograms. The proposed filter can account for much of the polynomial nonlinearities inherent in the input mammogram image and can replace the conventional edge detectors like Laplacian, gaussian etc. The filter gives rise to improved visualization and early detection of microcalcifications, which if left undetected, can lead to breast cancer. The performance of the filter is analyzed and found superior to conventional spatial edge detectors
Resumo:
Modeling nonlinear systems using Volterra series is a century old method but practical realizations were hampered by inadequate hardware to handle the increased computational complexity stemming from its use. But interest is renewed recently, in designing and implementing filters which can model much of the polynomial nonlinearities inherent in practical systems. The key advantage in resorting to Volterra power series for this purpose is that nonlinear filters so designed can be made to work in parallel with the existing LTI systems, yielding improved performance. This paper describes the inclusion of a quadratic predictor (with nonlinearity order 2) with a linear predictor in an analog source coding system. Analog coding schemes generally ignore the source generation mechanisms but focuses on high fidelity reconstruction at the receiver. The widely used method of differential pnlse code modulation (DPCM) for speech transmission uses a linear predictor to estimate the next possible value of the input speech signal. But this linear system do not account for the inherent nonlinearities in speech signals arising out of multiple reflections in the vocal tract. So a quadratic predictor is designed and implemented in parallel with the linear predictor to yield improved mean square error performance. The augmented speech coder is tested on speech signals transmitted over an additive white gaussian noise (AWGN) channel.
Resumo:
The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals