8 resultados para Physiological Shock.

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

S. album L. is the source of highly priced and fragrant heartwood which on steam distillation yields on an average 57 per cent oil of high perfumery value. Global demand for sandalwood is about 5000-6000 tons/year and that of oil is 100 tons/year. Heartwood of sandal is estimated to fetch up to Rs. 3.7 million/ton and wood oil Rs.70,000-100,000/ kg in the international market. Sandal heartwood prices have increased from Rs. 365/ton in 1900 to Rs. 6.5 lakhs/ton in 1999-2000 and to Rs. 37 lakhs/ton in 2007. Substantial decline in sandalwood production has occurred from 3176 tons/year during 1960-‘ 65 to 1500 tons/year in 1997-98, and to 500 tons/year in 2007.Depletion of sandal resources is attributed to several factors, both natural and anthropogenic. Low seed setting, poor seed germination, seedling mortality, lack of haustorial connection with host plant roots, recurrent annual fires in natural sandal forests, lopping of trees for fodder, excessive grazing, hacking, encroachments, seedling diseases and spread of sandal spike disease are the major problems facing sandal. While these factors hinder sandal regeneration in forest areas, the situation is accelerated by human activities of chronic overexploitation and illicit felling.Deterioration of natural sandal populations due to illicit felling, encroachments and diseases has an adverse effect on genetic diversity of the species. The loss of genetic diversity has aggravated during recent years due to extensive logging, changing landuse patterns and poor natural regeneration. The consequent genetic erosion is of serious concern affecting tree improvement programme in sandal. Conservation as well as mass propagation are the two strategies to be given due importance. To initiate any conservation programme, precise knowledge of the factors influencing regeneration and survival of the species is essential. Hence, the present study was undertaken with the objective of investigating the autotrophic and parasitic phase of sandal seedlings growth, the effects of shade on morphology, chlorophyll concentration and chlorophyll fluorescence of sandal seedlings, genetic diversity in sandal seed stands using ISSR markers, and the diversity of fungal isolates causing sandal seedling wilt using RAPD markers. All these factors directly influence regeneration and survival of sandal seedlings in natural forests and plantations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title reaction was undertaken to establish the interaction between amantadine and molybdate at physiological pH. Identical FTIR spectra, TG-DTA curves and CHN data of the complexes formed from three solutions at pH 1.5, 7.4 and 8.0 indicate that the same complex was formed at all the three pHs. The FTIR spectrum shows shift in peaks corresponding to primary amino group of the drug due to coordination to molybdate. An octahedral geometry is assigned to the complex. The kinetics of the complexation has been studied at low concentrations of the reactants using UV-visible spectrophotometry. At pH 7.4, the initial rate varies linearly with [molybdate]. A plot of initial rate versus [drug] is linear passing through origin. These results indicate that the drug and molybdate react at pH 7.4 even at low concentrations. At pH 1.5, the rate increases linearly with increase in [drug] but decreases with [molybdate]. The effect of pH and ionic strength on the rate of the reaction has also been studied. A suitable mechanism has been proposed for the reaction. Reaction between the drug and molybdate even at low concentrations and the fact that the amino group of amantadine required to be free for its function as antiviral, is bound to molybdate in the complex suggests that simultaneous administration of the drug and molybdate supplements should be avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In India industrial pollution has become a subject of increasing concern.Incidents of industrial pollution have been reported from many parts of the country. Cochin, the collection site of the present study, being the industrial capital of Kerela is also a harbour, is vulnerable to pollution by trace metal contaminants. In the recent times, pollutants of greatest concern in the aquatic environment are those which are persistent such as toxic heavy metals and the chlorinated hydrocarbons which include insecticides and pesticides.The animals collected from the clam bed situated on the northern side af Cochin bermouth are subject to wide fluctuations in salinity both seasonal and tidal. also; salinity is considered as an important parameter influencing the.-physiological functioning of an organism. Hence, the salinity tolerance of the animal is worked out. Considering the potential vulnerability of Cochin backwaters to heavy metal pollution, the impact of heavy metal copper (II) on the bivalve Sunetta sripta was conceived. Static bioassays were conducted for the determination of the sublethal concentrations of the metal as a preliminary step towards the toxicity studies. Oxygen consumption and filtration rate which are considered as reliable sublethal toxicity indices were employed for investigating the toxic effects of the metal. Bioaccumulation, a physiological phenomenon which can be of importance from the public health point of view, and also in the assessment of environmental quality is also dealt with.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No serious attempt has so far been made in India to make use of the ‘Mussel watch’ concept as a useful tool for pollution monitoring of the marine and estuarine environment. The recently conducted 'National seminar on mussel watch’ by the Cochin University of Science and Technology (13-14 Feb, 1986) discussed the technical aspects related to mussel watch programme and the application of sentinel organism concept to the coastal areas of India. It is well known that the biological and physiological characteristics of the organism inhabiting tropical waters such as those prevailing in India, and the ecological as well as the environmental characteristics of temperate areas, where mussel watch programmes are already in existence differ greatly. So it is essential to adopt the techniques and standards developed for temperate species to the situations and conditions in India. In this context it is a prerequisite to collect information on physiology and other biological indices of stress of possible sentinel organisms like P.viridis. In consideration of the above, P. viridis which is a potential sentinel organism, is selected for the present study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actinomycetes are gram-positive, free-living, saprophytic bacteria widely distributed in soil, water and colonizing plants showing marked chemical and morphological diversity. They are potential source of many bioactive compounds, which have diverse clinical effects and important applications in human medicine. In the present work, we have studied some of the physiological and biochemical characteristics of 36 actinomycete strains isolated from the shola soils of tropical montane forest; a relatively unexplored biodiversity hotspot. Ability of actinomycetes isolates to ferment and produce acids from various carbohydrate sources such as innositol, mannose, sorbitol, galactose, mannitol, xylose, rhamnose, arabinose, lactose and fructose were studied. Almost all the carbon compounds were utilized by one or other actinomycete isolates. The most preferred carbon sources were found to be xylose (94.44%) followed by fructose and mannose (91.66%). Only 41.76% of the isolates were able to ferment lactose. The ability of actinomycetes isolates to decompose protein and amino acid differ considerably. 72.22% of the isolates were able to decompose milk protein casein and 61.11% of the isolates decompose tyrosine. Only 8.33% of the strains were able to decompose amino acid hypoxanthine and none of them were able to decompose amino acid xanthine. Potential of the actinomycetes isolates to reduce esculin, urea and hippurate and to resist lysozyme was also checked. 91.66% of the isolates showed ability to decompose esculin and 63.88% of the isolates had the capacity to produce urease and to decompose urea. Only 25% of the isolate were able to decompose hippurate and 94.44% showed lysozyme resistance