10 resultados para Physiological Effects of Alcohol.

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In India industrial pollution has become a subject of increasing concern.Incidents of industrial pollution have been reported from many parts of the country. Cochin, the collection site of the present study, being the industrial capital of Kerela is also a harbour, is vulnerable to pollution by trace metal contaminants. In the recent times, pollutants of greatest concern in the aquatic environment are those which are persistent such as toxic heavy metals and the chlorinated hydrocarbons which include insecticides and pesticides.The animals collected from the clam bed situated on the northern side af Cochin bermouth are subject to wide fluctuations in salinity both seasonal and tidal. also; salinity is considered as an important parameter influencing the.-physiological functioning of an organism. Hence, the salinity tolerance of the animal is worked out. Considering the potential vulnerability of Cochin backwaters to heavy metal pollution, the impact of heavy metal copper (II) on the bivalve Sunetta sripta was conceived. Static bioassays were conducted for the determination of the sublethal concentrations of the metal as a preliminary step towards the toxicity studies. Oxygen consumption and filtration rate which are considered as reliable sublethal toxicity indices were employed for investigating the toxic effects of the metal. Bioaccumulation, a physiological phenomenon which can be of importance from the public health point of view, and also in the assessment of environmental quality is also dealt with.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No serious attempt has so far been made in India to make use of the ‘Mussel watch’ concept as a useful tool for pollution monitoring of the marine and estuarine environment. The recently conducted 'National seminar on mussel watch’ by the Cochin University of Science and Technology (13-14 Feb, 1986) discussed the technical aspects related to mussel watch programme and the application of sentinel organism concept to the coastal areas of India. It is well known that the biological and physiological characteristics of the organism inhabiting tropical waters such as those prevailing in India, and the ecological as well as the environmental characteristics of temperate areas, where mussel watch programmes are already in existence differ greatly. So it is essential to adopt the techniques and standards developed for temperate species to the situations and conditions in India. In this context it is a prerequisite to collect information on physiology and other biological indices of stress of possible sentinel organisms like P.viridis. In consideration of the above, P. viridis which is a potential sentinel organism, is selected for the present study

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem investigated is on the haematological aspects of two freshwater pulmonate snails, Indoplanorbis exustus (Deshayes),and Lymnaea acuminata f.rufescens (Gray). An important aspect of the present investigation is to emphasize the utilization of freshwater organisms as models for research directed at understanding the basic biomedical problems that remain unresolved. Another aspect is to demonstrate how haemolymph can be treated as a tissue because of late, it has been shown that several parameters of blood can be taken as reliable indicators for diagnostic purposes, and also to monitor environmental pollution. The various haematological parameters studied are total haemocyte number,packed cell volume, haemoglobin, and inorganic as well organic constituents in three size groups of both the snail species. The effect of copper toxicity was measured in terms of total haemocyte count, and the activity pattern of selected phosphatases and transaminases.The study concluded that enzyme activity levels can be taken as reliable indicators to monitor pollution. Age is a factor that determines several of the physiological, biochemical and metabolic activities. This study also indicates that haemolymph can be taken as an organ system to study the various changes taking place at organ systems levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study is an attempt to understand the physiological responses of a freshwater gastropod, in terms of haematological parameters, in normal conditions as well as in various natural and man made altered conditions of the environment.Pila virens, a freshwater prosobranch,commonly found in paddy fields, ponds, and streams of Kerala is selected as the test animal for the present investigation. Various haemolymph constituents such as total carbohydrate, glycogen, total protein, total lipid, urea,ammonia,sodium,potasium, calcium, and chloride which are directly involved in the control and maintenance of different physiological systems, were analysed in the present study. Selected haematological parameters like total haemocyte number, and packed cell volume were also determined. Besides , the activity pattern of selected haemolymph enzymes such as acid phosphatase (ACP), alkaline phosphatase (ALP),Glutamate-oxaloacetate transaminase (GOT), and glutamate-pyruvate transaminase (GPT), all having diagnostic value in terms of internal defence system and metabolism of the organism, were also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation has addressed the effects of PHC contaminated culture medium on the morphology, physiology and behaviour of shrimps. The shrimp Metapenaeus dobsoni is an important member of the crustacean animal community abounding the oil contaminated benthic regions of Cochin backwater system. Since it is known that true pollutants can disrupt the sustainability of ecosystems by its effect on species, populations and communities,a representative species was used for the study. The results discussed in this work is bound to help in understanding the ecotoxicant resistance that the animal may display under toxic conditions compared to dynamic steady-state systems in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is an attempt by the author to assess the suitability of Metapenaeus dobsoni (Miers), an economically important crustacean species as a sentinel organism of trace metal pollution. The results of detailed investigations on seasonal variation, bioassay, accumulation and depuration of three metals viz., mercury, copper and zinc are presented and discussed. The importance of trace metals in the aquatic environment and their present status in the study area - Cochin backwaters, the significance of crustacean fisheries, the species M. dobsoni and the objectives of the present studies are described in Chapter 1. The methodology adopted during the investigation is given in Chapter 2. Chapter 3 delineates the seasonal variation of Hg, Cu and Zn in the edible and non-edible parts of M. dobsoni collected from Cochin backwaters for a period of one year (June 1984-May 1985). The results of bioassay experiments are given in Chapter 4. Kinetics of accumulation ,retention and depuration of trace metals, their biological half-life, the influence of size group and environmental factors are given in Chapter 5. The effect of these metals on the physiological response of M. dobsoni viz. oxygen consumption is included in Chapter 6. A summary and list of references are also appended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrialisation affects air, water, and soil. Industrial effluents which enter the aquatic environment either by direct disposal or through run off, affect living organisms at morphological and physiological levels. In any living tissue toxic materials exert their effects first at molecular and biochemical levels (Robbins and Angell, 1976). Most of the industrial effluents contain elevated concentrations of organic and inorganic chemicals capable of eliciting stimulatory or inhibitory effects on the metabolism of aquatic organisms. Heavy metals form an important group of environmental pollutants. Effects of pollution on the aquatic environment by heavy metals have received considerable attention in recent years due to their toxicity even at very low levels, persistence in the environment, and chances of getting biomagnified. A pollutant that does not affect a particular process under normal unstressed condition may affect the ability of the animal to adjust to changing environmental conditions which ultimately decrease its chances of survival (Thurberg et al., 1973

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actinomycetes are gram-positive, free-living, saprophytic bacteria widely distributed in soil, water and colonizing plants showing marked chemical and morphological diversity. They are potential source of many bioactive compounds, which have diverse clinical effects and important applications in human medicine. In the present work, we have studied some of the physiological and biochemical characteristics of 36 actinomycete strains isolated from the shola soils of tropical montane forest; a relatively unexplored biodiversity hotspot. Ability of actinomycetes isolates to ferment and produce acids from various carbohydrate sources such as innositol, mannose, sorbitol, galactose, mannitol, xylose, rhamnose, arabinose, lactose and fructose were studied. Almost all the carbon compounds were utilized by one or other actinomycete isolates. The most preferred carbon sources were found to be xylose (94.44%) followed by fructose and mannose (91.66%). Only 41.76% of the isolates were able to ferment lactose. The ability of actinomycetes isolates to decompose protein and amino acid differ considerably. 72.22% of the isolates were able to decompose milk protein casein and 61.11% of the isolates decompose tyrosine. Only 8.33% of the strains were able to decompose amino acid hypoxanthine and none of them were able to decompose amino acid xanthine. Potential of the actinomycetes isolates to reduce esculin, urea and hippurate and to resist lysozyme was also checked. 91.66% of the isolates showed ability to decompose esculin and 63.88% of the isolates had the capacity to produce urease and to decompose urea. Only 25% of the isolate were able to decompose hippurate and 94.44% showed lysozyme resistance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, three important stressors: cadmium ion (Cd++), salinity and temperature were selected to study their effects on protein and purine catabolism of O. mossambicus. Cadmium (Cd) is a biologically nonessential metal that can be toxic to aquatic animals. Cadmium is a trace element which is a common constituent of industrial effluents. It is a non-nutrient metal and toxic to fish even at low concentrations. Cadmium ions accumulate in sensitive organs like gills, liver, and kidney of fish in an unregulated manner . Thus; the toxic effects of cadmium are related to changes in natural physiological and biochemical processes in organism. The mechanics of osmoregulation (i.e. total solute and water regulation) are reasonably well understood (Evans, 1984, 1993), and most researchers agree that salinities that differ from the internal osmotic concentration of the fish must impose energetic regulatory costs for active ion transport. There is limited information on protein and purine catabolism of euryhaline fish during salinity adaptation. Within a range of non-lethal temperatures, fishes are generally able to cope with gradual temperature changes that are common in natural systems. However, rapid increases or decreases in ambient temperature may result in sub lethal physiological and behavioral responses. The catabolic pathways of proteins and purines are important biochemical processes. The results obtained signifies that O. mossambicus when exposed to different levels of cadmium ion, salinity and temperature show great variation in the catabolism of proteins and purines. The organism is trying to attain homeostasis in the presence of stressors by increasing or decreasing the activity of certain enzymes. The present study revealed that the protein and purine catabolism in O. mossambicus is sensitive to environmental stressors.