103 resultados para Philosophical investigations
em Cochin University of Science
Resumo:
Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development
Resumo:
This study concentrates the chemical properties of hydrazones due to its chelating capability and their pharmacological applications. Studies cover the preparation of different acid hydrazones and their structural studies and studies on their antimicrobial activity, synthesis and spectral characterization of different complexes of copper oxovanadium, manganese, nickel etc. Effect of incorporation of heterocyclic bases to the coordination sphere, change in the biological activity of acid hydrazones upon coordination, development of X-ray quality single crystals and its X-ray diffraction studies, studies on the redox behavior of the coordinated metal ions and correlation between the stereochemistry and biological activities.
Resumo:
Titania is a versatile metal oxide with multiple applications. Titania supported catalysts are reported to be much more active compared to conventional silica or alumina supported ones in some reactions. TiO2 (anatase) having high surface area, with better crystallinity and high onset temperature of rutilation can be prepared by thermal hydrolysis of titanyl sulfate solution under controlled conditions. Calcinations at 350oC for 6 hrs were necessary to crystallize anatase. Method of preparation and percentage of the loaded metal oxides have greater influence on surface area. Drastic decrease in surface area was observed upon rutilation. Rutilation started at different temperatures depending on the metal oxide and the method of preparation. TiO2 should be characterized with high surface area, phase purity and high onset temperature of rutilation.Which should be well above the optimum temperature of a designated reaction in which it is employed as a catalyst. Variation in physical properties, depending upon the method of preparation is greater in TiO2 supported catalysts. Methanation activity was found to be highly dependent on nickel concentration present on the surface of the pellets. The methanation activity is strongly influenced by support material. The rate and turn over frequency of methanation and toluene oxidation activity of these catalysts are also equally important from an industrial point of view.
Resumo:
The thesis entitled “ Investigations on the solvent extraction and luminescence of lanthanoids with mixtures of heterocyclic β-diketone S and various neutral oxo-donors” embodies the results of investigations carried out on the solvent extraction of trivalent lanthanoids with various heterocyclic β-diketones in the presence and absence of neutral oxo-donors and also on the luminescent studies of Eu3+-heterocyclic β-diketonate complexes with Lewis bases. The primary objective of the present work is to generate the knowledge base, especially to understand the interactions of lanthanoid-heterocyclic β-diketonates with various macrocyclic ligands such as crown ethers and neutral organophosphorus extractants , with a view to achieve better selectivity. The secondary objective of this thesis is to develop novel lanthanoid luminescent materials based on 3-phenyl-4-aroyl-5-isoxazolones and organophosphorus ligands, for use in electroluminescent devices. In the beginning it describes the need for the development of new mixed-ligand systems for the separation of lanthanoids and the development and importance of novel luminescent lanthanoid- β-diketonate complexes for display devices. The syntheses of various para substituted derivatives of 4-aroyl-5-isoxazolones and their characterization by various spectroscopic techniques are described. It also investigate the solvent extraction behaviour of trivalent lanthanoids with 4-aroyl-5-isoxazolones in the presence and absence of various crown ethers such as 18C6, DC18C6, DB18C6 and B18C6. Elemental analysis, IR and H NMR spectral studies are used to understand the interactions of crown ethers with 4-aroyl-5-isoxazolonate complexes of lanthanoids. The synergistic extraction of trivalent lanthanoids with sterically hindered 1-phenyl-3-methyl-4-pivaloyl-5-pyrazolone in the presence of various structurally related crown ethers are studied. The syntheses, characterization and photyphysical properties of Eu3+-4-aroyl-5-isoxazolonate complexes in the presence of Lewis bases like trictylphosphine oxide or triphenylphosphine oxide were studied.
Resumo:
The thesis entitled INVESTIDGATIONS ON THE RECOVERY OF TITANIUM VANADIUM AND IRON VALUES FROM THE WASTE CHILORIDE LIQUORS OF TITANIA INDUSTRY embodies the results of the investigations carried out on the solvent extraction separation of iron (III) vanadium(V) and titanium (IV) chlorides from the waste chloride liquors of titanium minerals processing industry by employing tributylphosphate (TBT) as an extractant. The objective of this study is to generate the knowledge base to achieve the recovery of iron, vanadium and titanium cvalues from multi- metal waste chloride liquors originating from ilmenite mineral beneficiation industries through selective separation and value added material development
Resumo:
Vacuum-ultraviolet (VUV) irradiation (kexc: 172 ± 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g. secondary functionalization, enhanced aggregation or printing, processes leading to morphological changes open new possibilities of microstructurization. Series of experiments made under different experimental conditions brought evidence of two different reaction pathways: introduction of OH- and C=O-groups at the polystyrene pathways is mainly due to the reaction of reactive oxygen species (hydroxyl radicals, atomic oxygen, ozone) produced in the gas phase between the VUV-radiation source and the substrate. However, oxidative fragmentation leading to morphological changes, oxidation products of low molecular weight and eventually to mineralization of the organic substrate is initiated by electronic excitation of the polymer leading to C–C-bond homolysis and to a complex oxidation manifold after trapping of the C-centred radicals by molecular oxygen. The pathways of oxidative functionalization or fragmentation could be differentiated by FTIR-ATR analysis of irradiated polystyrene surfaces before and after washing with acetonitrile and microscopic fluorescence analysis of the surfaces secondarily functionalized with the N,N,N-tridodecyl-triaza-triangulenium (TATA) cation. Ozonization of the polystyrene leads to oxidative functionalization of the polymer surface but cannot initiate the fragmentation of the polymer backbone. Oxidative fragmentation is initiated by electronic excitation of the polymer (contact-mode AFM analysis), and evidence of the generation of intermediate C-centred radicals is given e.g. by experiments in the absence of oxygen leading to cross-linking (solubility effects, optical microscopy, friction-mode AFM) and disproportionation (fluorescence).
Resumo:
The study deals with structural and spectral investigations of transition metal complexes of di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones. The main objective and scope of the work deals with di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones are quardridentate NNNS donor ligands. To chosen this ligand for study because, the ligands are prepared and characterized for the first time, since there are two pyridyl nitorgens, dimmers and polymers of complexes may result leading to interesting structural aspects. The work includes the preparation of the thiosemicarbzones and their structural and spectral studies, synthesis and spectral characterization of complexes of copper(II),,nickel(II),manganese(II), dioxovanadium(V),cobalt(III),zinc(II),cadmium(II) of the ligand HL, synthesis and spectral characterization of complexes of copper(II),manganese(II), of the ligand HL and the development of X-ray quality crystals and its X-ray diffraction studies. The structural characterization techniques are elemental analysis, conductivity measurements, magnetic measurements, electronic spectroscopy, H NMR spectroscopy, Infrared spectroscopy and X-ray crystallography.
Resumo:
Liquid Crystalline DNA is emerging as an active area of research, due to its potential applications in diverse fields, ranging from nanoelectronics to therapeutics. Since, counter ion neutralization is an essential requirement for the expression of LC DNA, and the present level of understanding on the LC phase behavior of high molecular weight DNA is inadequate, a thorough investigation is required to understand the nature and stability of these phases under the influence of various cationic species. The present study is, therefore mainly focused on a comparative investigation of the effect of metal ions of varying charge, size, hydration and binding modes on the LC phase behavior of high molecular weight DNA. The main objectives of the works are investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkali metal ions, investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkaline earth metal ions, effects of multivalent, transition and heavy metal ions on the LC phase behavior of high molecular weight DNA and investigations on spermine induced LC behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. The critical DNA concentration (CD) required for the expression of LC phases, phase transitions and their stability varied considerably when the binding site of the metal ions changed from phosphate groups to the nitrogenous bases of DNA, with Li+ giving the highest stability. Multiple LC phases with different textures, sometimes diffused and unstable or otherwise mainly distinct and clear, were observed on mixing metal ions with DNA solutions, which in turn depended on the charge, size, hydration factor, binding modes, concentration of the metal ions and time. Molecular modeling studies on binding of selected metal ions to DNA supported the experimental findings
Resumo:
In this project, an attempt has been made to study the stability of erythrocyte and lysosomal membranes biochemically. Erythrocytes were chosen for the study because of their ready availability and relative simplicity. Biological membranes forming closed boundaries between compartments of varying composition consist mainly of proteins and lipids. They are asymmetric, fluid structures that are thermodynamically stable and metabolically active. Normal cellular function begins with normal membrane structure and any variation in it may upset the normal functions. The degree of fluidity of a membrane depends on the chain length of its lipids and degree of unsaturation of constituent fatty acids. In response to environmental changes, many cells can regulate composition of their membranes to maintain the overall semi fluid environment necessary for many membrane associated functions. The assembly and Maintenance of membrane structures in cells is a dynamic process. The components are not only synthesized and inserted into a growing membrane but are also continuously degraded at a slower rate. This turnover process varies with each individual molecule.Lysosomes are important in the catabolic processes occurring in the cell. Lysosomes contain hydrolytic enzymes and are stable under normal conditions. In certain pathological conditions, the lysosomal membrane may rupture, releasing the hydrolytic enzymes into the cell and digestion of cell takes place as a whole. This is very dangerous. In normal life processes of multi cellular organisms, lysosomes rupture following the death of a cell and it may have some value as a built in mechanism for selfremoval of dead cells.An attempt has also been made in this project towards developing lysosome membrane stability as an index of fish spoilage during storage. Different membranes within the cell and between cells have different compositions as reflected in the ratio of protein to lipid. The difference is not surprising given the very different functions of membranes
Resumo:
The main objective of carrying out this investigation is to develop suitable transducer array systems so that underwater pipeline inspection could be carried out in a much better way, a focused beam and electronic steering can reduce inspection time as well. Better results are obtained by optimizing the array parameters. The spacing between the elements is assumed to be half the wavelength so that the interelement interaction is minimum. For NDT applications these arrays are operated at MHz range. The wavelengths become very small in these frequency ranges. Then the size of the array elements becomes very small, requiring hybrid construction techniques for their fabrication. Transducer elements have been fabricated using PVDF as the active, mild steel as the backing and conducting silver preparation as the bonding materials. The transducer is operated in the (3,3) mode. The construction of a high frequency array is comparatively complicated. The interelement spacing between the transducer elements becomes considerably small when high frequencies are considered. It becomes very difficult to construct the transducer manually. The electrode connections to the elements can produce significant loading effect. The array has to be fabricated using hybrid construction techniques. The active materials has to be deposited on a proper substrate and etching techniques are required to fabricate the array. The annular ring, annular cylindrical or other similar structural forms of arrays may also find applications in the near future in treatments were curved contours of the human body are affected.
Resumo:
The thesis provides an overall review and introduction to amorphous semiconductors, followed by a brief discussion on the important structural models proposed for chalcogenide glasses and their electrical, optional and thermal properties. It also gives a brief description of the Physics of thin films, ion implantation and Photothermal Deflection Spectroscopy. A brief description of the experimental setup of a photothermal deflection spectrometer and the details of the preparation and optical characterization of the thin film samples. It deals with the employment of the subgap optional absorption measurement by PDS to characterize the defects, amorphization and annealing behavior in silicon implanted with B+ ions and the profiles of ion range and vacancy distribution obtained by the TRIM simulation. It reports the results of all absorption measurements by PDS in nitrogen implanted thin film samples of Ge-Se and As-Se systems
Resumo:
This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing