12 resultados para Perturbed and damped oscillators

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The question of stability of black hole was first studied by Regge and Wheeler who investigated linear perturbations of the exterior Schwarzschild spacetime. Further work on this problem led to the study of quasi-normal modes which is believed as a characteristic sound of black holes. Quasi-normal modes (QNMs) describe the damped oscillations under perturbations in the surrounding geometry of a black hole with frequencies and damping times of oscillations entirely fixed by the black hole parameters.In the present work we study the influence of cosmic string on the QNMs of various black hole background spacetimes which are perturbed by a massless Dirac field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the effect of parameter fluctuations and the resultant multiplicative noise on the synchronization of coupled chaotic systems. We introduce a new quantity, the fluctuation rate Ф as the number of perturbations occurring to the parameter in unit time. It is shown that ϕ is the most significant quantity that determines the quality of synchronization. It is found that parameter fluctuations with high fluctuation rates do not destroy synchronization, irrespective of the statistical features of the fluctuations. We also present a quasi-analytic explanation to the relation between ϕ and the error in synchrony.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear dynamics has emerged into a prominent area of research in the past few Decades.Turbulence, Pattern formation,Multistability etc are some of the important areas of research in nonlinear dynamics apart from the study of chaos.Chaos refers to the complex evolution of a deterministic system, which is highly sensitive to initial conditions. The study of chaos theory started in the modern sense with the investigations of Edward Lorentz in mid 60's. Later developments in this subject provided systematic development of chaos theory as a science of deterministic but complex and unpredictable dynamical systems. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. Here we introduce the concept of noise, and two familiar types of noise are discussed. The classifications and representation of white and colored noise are introduced. Based on this we introduce the concept of randomness that we deal with as a variant of the familiar concept of noise. The dynamical systems introduced are the Rossler system, directly modulated semiconductor lasers and the Harmonic oscillator. The directly modulated semiconductor laser being not a much familiar dynamical system, we have included a detailed introduction to its relevance in Chaotic encryption based cryptography in communication. We show that the effect of a fluctuating parameter mismatch on synchronization is to destroy the synchronization. Further we show that the relation between synchronization error and timescales can be found empirically but there are also cases where this is not possible. Studies show that under the variation of the parameters, the system becomes chaotic, which appears to be the period doubling route to chaos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamical system with a damping that is quadratic in velocity is converted into the Hamiltonian format using a nonlinear transformation. Its quantum mechanical behaviour is then analysed by invoking the Gaussian effective potential technique. The method is worked out explicitly for the Duffing oscillator potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usually typical dynamical systems are non integrable. But few systems of practical interest are integrable. The soliton concept is a sophisticated mathematical construct based on the integrability of a class ol' nonlinear differential equations. An important feature in the clevelopment. of the theory of solitons and of complete integrability has been the interplay between mathematics and physics. Every integrable system has a lo11g list of special properties that hold for integrable equations and only for them. Actually there is no specific definition for integrability that is suitable for all cases. .There exist several integrable partial clillerential equations( pdes) which can be derived using physically meaningful asymptotic teclmiques from a very large class of pdes. It has been established that many 110nlinear wa.ve equations have solutions of the soliton type and the theory of solitons has found applications in many areas of science. Among these, well-known equations are Korteweg de-Vries(KdV), modified KclV, Nonlinear Schr6dinger(NLS), sine Gordon(SG) etc..These are completely integrable systems. Since a small change in the governing nonlinear prle may cause the destruction of the integrability of the system, it is interesting to study the effect of small perturbations in these equations. This is the motivation of the present work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrational overtone spectroscopy of molecules containing X-H oscillators (X = C, N, O...) has become an effective tool for the study of molecular structure, dynamics, inter and intramolecular interactions, conformational aspects and substituent effects in aliphatic and aromatic compounds. In the present work, the author studied the NIR overtone spectra of some liquid phase organic compounds. The analysis of the CH, NH and OH overtones yielded important structural information about these systems. In an attempt to get information on electronic energy levels, we studied the pulsed Nd:YAG laser induced fluorescence spectra of certain organic compounds. The pulsed laser Raman spectra of some organic compounds are also studied. The novel high resolution technique of near infrared tunable diode laser absorption spectroscopy (TDLAS) is used to record the rotational structure of the second OH overtone spectrum of 2-propanol. The spectral features corresponding to the different molecular conformations could be identified from the high resolution spectrum. The whole work described in this thesis is divided into five chapters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and inexpensive power supply suitable for characteristics studies of a klystron is described. The circuit is a modified form of the high voltage adjustable power supply based on LM 317. This provides the necessary cavity and repeller voltages over a wide range, with good regulation. The system is protected aa- ainst short circuits and is ideallv suitable for laboratorv, ex.Deri ments with reflex klystrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Black hole's response to external perturbations will carry significant information about these exotic objects. Its response, shortly after the initial `kick', is known to be ruled by the damped oscillation of the perturbating eld, called quasinormal modes(QNMs), followed by the tails of decay and is the characteristic of the background black hole spacetime. In the last three decades, several shortcomings came out in the Einstein's General Theory of Relativity(GTR). Such issues come, especially, from observational cosmology and quantum eld theory. In the rst case, for example, the observed accelerated expansion of the universe and the hypothesized mysterious dark energy still lack a satisfactory explanation. Secondly, GTR is a classical theory which does not work as a fundamental theory, when one wants to achieve a full quantum description of gravity. Due to these facts modi cation to GTR or alternative theories for gravity have been considered. Two potential approaches towards these problems are the quintessence model for dark energy and Ho rava-Lifshitz(HL) gravity. Quintessence is a dynamical model of dark energy which is often realized by scalar eld mechanism. HL gravity is the recently proposed theory of gravity, which is renormalizable in power counting arguments. The two models are considered as a potential candidate in explaining these issues.