9 resultados para Permutation-Symmetric Covariance

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bandwidth enhancement of a rectangular microstrip antenna using a T-shaped microstrip feed is explored in this paper. A 2:1 VSWR impedance bandwidth of 23% is achieved by employing this technique. The far-field patterns are stable across the pass band. The proposed antenna can be used conveniently in broadband communications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical analysis of a symmetric T-shaped rnicrostripfed rectangular microstrip antenna using the finite-difference titnedoniain (FDTD) method is presented in this paper. The resonant frequency, return loss, impedance bandwidth, and radiation patterns are predicted and are in good agreement with the measured results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple technique for obtaining identical E- and H-plane patterns from E-plane sectoral feed horn is presented. Halfpower beam width and gain of the antenna are also improved considerably. Experimental results for a number of horns with flanges of various parameters are also presented. This system may find practical application in radar and space communication systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified H-plane sectoral horn antenna with identical E- and'H- plane.patterns over the X-band frequency is discussed. This system has significantly reduced side lobes and hack lobes. Half=power beam width and gain of the antenna are also improved with enhanced matching , Experimental results for a number of horns with various flanges are presented . These find practical application for illuminating symmetric antennas like paraboloids and polarization measurements in radio astronomy, etc. Compared to the fixed pyramidal horns. the present system offers great convenience in trimming the antenna characteristics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine tool chatter is an unfavorable phenomenon during metal cutting, which results in heavy vibration of cutting tool. With increase in depth of cut, the cutting regime changes from chatter-free cutting to one with chatter. In this paper, we propose the use of permutation entropy (PE), a conceptually simple and computationally fast measurement to detect the onset of chatter from the time series using sound signal recorded with a unidirectional microphone. PE can efficiently distinguish the regular and complex nature of any signal and extract information about the dynamics of the process by indicating sudden change in its value. Under situations where the data sets are huge and there is no time for preprocessing and fine-tuning, PE can effectively detect dynamical changes of the system. This makes PE an ideal choice for online detection of chatter, which is not possible with other conventional nonlinear methods. In the present study, the variation of PE under two cutting conditions is analyzed. Abrupt variation in the value of PE with increase in depth of cut indicates the onset of chatter vibrations. The results are verified using frequency spectra of the signals and the nonlinear measure, normalized coarse-grained information rate (NCIR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n the recent years protection of information in digital form is becoming more important. Image and video encryption has applications in various fields including Internet communications, multimedia systems, medical imaging, Tele-medicine and military communications. During storage as well as in transmission, the multimedia information is being exposed to unauthorized entities unless otherwise adequate security measures are built around the information system. There are many kinds of security threats during the transmission of vital classified information through insecure communication channels. Various encryption schemes are available today to deal with information security issues. Data encryption is widely used to protect sensitive data against the security threat in the form of “attack on confidentiality”. Secure transmission of information through insecure communication channels also requires encryption at the sending side and decryption at the receiving side. Encryption of large text message and image takes time before they can be transmitted, causing considerable delay in successive transmission of information in real-time. In order to minimize the latency, efficient encryption algorithms are needed. An encryption procedure with adequate security and high throughput is sought in multimedia encryption applications. Traditional symmetric key block ciphers like Data Encryption Standard (DES), Advanced Encryption Standard (AES) and Escrowed Encryption Standard (EES) are not efficient when the data size is large. With the availability of fast computing tools and communication networks at relatively lower costs today, these encryption standards appear to be not as fast as one would like. High throughput encryption and decryption are becoming increasingly important in the area of high-speed networking. Fast encryption algorithms are needed in these days for high-speed secure communication of multimedia data. It has been shown that public key algorithms are not a substitute for symmetric-key algorithms. Public key algorithms are slow, whereas symmetric key algorithms generally run much faster. Also, public key systems are vulnerable to chosen plaintext attack. In this research work, a fast symmetric key encryption scheme, entitled “Matrix Array Symmetric Key (MASK) encryption” based on matrix and array manipulations has been conceived and developed. Fast conversion has been achieved with the use of matrix table look-up substitution, array based transposition and circular shift operations that are performed in the algorithm. MASK encryption is a new concept in symmetric key cryptography. It employs matrix and array manipulation technique using secret information and data values. It is a block cipher operated on plain text message (or image) blocks of 128 bits using a secret key of size 128 bits producing cipher text message (or cipher image) blocks of the same size. This cipher has two advantages over traditional ciphers. First, the encryption and decryption procedures are much simpler, and consequently, much faster. Second, the key avalanche effect produced in the ciphertext output is better than that of AES.