55 resultados para Patch retangular
em Cochin University of Science
Resumo:
A circular miqrostrip antenna with a modified structure is presented. By adjusting the feed location along the circumference of the patch it is possible to match the antenna with a C microstrip line of any impedance. The impedance bandwidth and radiation characteristics are unaffected by this structural V modification.
Resumo:
Two three-clement polarisation-agile active microstrip patch arrays have been developed . The radiating elements are square patches each with two transistors mounted on adjacent edges. The patches radiate orthogonal modes , the relative phase of which can be varied. Radiation patterns show good agreement with predictions from theory, in both linear and circular polarization, and no grating lobes were observed
Resumo:
A simple technique to improve the impedance bandwidth of a circular microstrip patch antenna using two sectorial slots is proposed. Using this design more than 5% impedance bandwidth is obtained. The added advantage of this new antenna is that it can be fed by a 50- microstrip line
Resumo:
A novel H-shaped patch antenna suitable for wireless and satellite communications is presented. The new antenna has some advantages compared to conventional microstrip patch antennas, such as small size, a fewer number of modes, no harmonic resonance, and the provision of pure reactive impedances at its harmonics that can result in increasing the transmitter efficiency. The basic principles and design procedure are introduced. Two antennas at two different frequencies, 4 and 10 GHz, are designed, fabricated, and measured. The measured results show a good agreement with the predicted ones
Resumo:
patch resonator with a via connecting ground plane is proposed and studied experimentally. The resonant frequency of this patch resonator is tunable up to about 34 % by adjusting the via position in the center line. The lowest resonant frequency of this patch resonator has been reduced by more than 64% of the same size patch resonator
Resumo:
compact multihand planar octagonal-shaped microstrip antenna simultaneously suitable for mobile communication and blue tooth application is presented. The antenna provides sufficient isolation benveen the two operating bands and an area reduction of -29 % with respect to a circular patch operating in the same band
Resumo:
A novel technique fitr the bat dividth enhancement of conventional rectangular microstrip antenna is proposed in this paper. When a high permittivity dielectric resonator of suitable resonant frequency was loaded over the patch. the % bandwidth of the antenna was increased by more than five tunes without much affecting its gain and radiation performance. A much more improved bandwidth was obtained when the dielectric resonator was placed on the feedline. Experimental study shows a 2:1 VSWR bandwidth of more than 10% and excellent cross polarization performance with increased pass band and radiation coverage abnost the same as that of rectangular microstrip antenna
Resumo:
A novel slope -strip feeding technique for a microstrip antenna is presented in order to achieve a broad bandwidth. The experimental results show that the optimal bandwidth attained is 53.4% for less than -10-dB return loss
Resumo:
A simple technique to improve the impedance bandwidth of a circular microstrip patch antenna using two sectorial slots is proposed. Using this design more than 5% impedance bandwidth is obtained. The added advantage of this new antenna is that it can be fed by a 50 microstrip line.
Resumo:
The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.
Resumo:
Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.
Resumo:
The paper proposes an octagon shaped Microstrip Patch Antenna suitable for dual band applications. The striking features of this compact, planar antenna are sufficient isolation between the two operating bands and an area reduction of - 29% in comparison to a conventional circular patch antenna operating in the same band
Resumo:
The recent boom in wireless communication industry, especially in the area of cellular telephony and wireless data communication, has led to the increased demand for multi band antennas. In such applications the issues to be addressed are, wide bandwidth and gain, while striving for miniature geometry. A dual frequency configuration useful in GSM1800 and Blue tooth, is one that operates with similar properties, both in terms of reflection and radiation characteristics, in the two bands of interest. Dual frequency operations can be realized by exciting the Microstrip Patch Antenna (MPA) using a single feed [1] or dual feed [2]. In this paper, Conformal FDTD[3] method with Perfect Magnetic Conductor (PMC) applied along the plane of symmetry [4] is used to study the characteristics of an Octagonal MPA. The theoretical results are compared against the experimental and IE3D™ simulated results
Resumo:
In this paper, a dual port, dual frequency, dual polarized, octagonal shaped Microstrip patch antenna, suitable for GPS applications is discussed experimentally and theoretically. The proposed antenna configuration is characterized by good impedance bandwidth, gain, isolation between two ports and broad radiation patterns
Resumo:
A dual port dual polarized octagonal microstrip patch antenna suitable for dual band applications is discussed theoretically and experimentally. The antenna exhibits good impedance bandwidth, gain and broad radiation patterns. Parameters predicted by the Conformal Finite Difference Time Domain algorithm show good agreement with the simulated results and experimental observations