8 resultados para Particle and resonance production
em Cochin University of Science
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box–Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase
Resumo:
This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF
Resumo:
The coplanar wave guide is an attractive device in microwave integrated circuits due to its uniplanar nature, ease of fabrication and low production cost. Several attempts are already done to explore the radiating modes in coplanar wave guide transmission lines. Usually coplanar wave guides are excited by an SMA connector with its centre conductor connected to the exact middle of the centre strip and the outer ground conductor to the two ground strips. The mode excited on it is purely a bound mode. The E-field distribution in the two slots are out of phase and there for cancels at the far field. This thesis addresses an attempt to excite an in phase E-field distribution in the two slots of the co planar wave guide by employing a feed asymmetry, in order to get radiation from the two large slot discontinuities of the coplanar waveguide. The omni directional distribution of the radiating energy can be achieved by widening the centre strip.The first part of the thesis deals with the investigations on the resonance phenomena of conventional coplanar waveguides at higher frequency bands. Then an offset fed open circuited coplanar waveguide supporting resonance/radiation phenomena is analyzed. Finally, a novel compact co planar antenna geometry with dual band characteristics, suitable for mobile terminal applications is designed and characterized using the inferences from the above study.
Resumo:
Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.
Resumo:
Existing method of culture were largely based on empirical knowledge. Lacking a scientific basis as such methods did, they were often wasteful and suffered severe limitation. Modern methods of fish and prawn culture based on scientific research, have revolutioned the industry in recent years and not only extended its scope to cover the whole country but led to increased fish and prawn production. An understanding of the biological capability of the water in the perennial and seasonal culture ponds, and the nature and extent of the influence of the abiotic factors on the production of organisms in the primary level of food chain would contribute to effectively implement management measures in the stocking strategies and in the evaluation of economics of production of prawns. It is against this background that the present topic of investigation "Studies on the ecology and production of algae in prawn culture systems” was selected.
Resumo:
Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.