26 resultados para Pancreatic Regeneration

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the changes in the brain EPI (Epinephrine), adrenergic receptors and the receptor gene expression were investigated during pancreatic regeneration and insulin secretion. The changes in the pancreatic islet EPI and adrenergic receptors were also studied in the pancreatectomised rats. The regulatory function of EPI in association with Epidermal growth factor (EGF) and glucose were investigated in rat islet cultures. In vitro studies were carried out using antagonists for adrenergic receptor subtypes to see their involvement in the islet DNA synthesis. The mechanism by which the peripheral EPI regulate insulin secretion was also investigated by studying the nuclear binding proteins in the pancreatic islets during pancreatic regeneration and diabetes. The study reveals that EPI can regulate the pancreatic islet cell proliferation by controlling the insulin synthesis and secretion. The brain adrenergic receptor gene expression and functional correlation regulate the pancreatic adrenergic receptors. The functional balance of α and β-adrenergic receptors controls the insulin secretion and pancreatic β-cell proliferation, which will have immense clinical significance in the treatment of Diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

nerv5o-HusT s ryescteempto. rTshaer oeb pjercetdiovme oinfa tnhtilsy s ltoucdaytewd ains ttoh ein bvreasitnig aanted tahree rionlveo olvf ehdy ipno tphaanlacrmeiact i5c- fHuTn,c t5i-oHn TaInAd acneldl p5r-HolTif2ercatrieocnepttohrr obuingdh isnygm apnadt hgeetniec pphtrqsHehepayaxuTevnepnpa cecIocnrhAirarettfyehilies pfceaasaai tdiolnetaoiae tcddnndmhc tr etab5aiueoncly-ggsamHr oermeHnndiaTasPeuituse2s rsLremdtca id oC tn[orri 3fegoa.5d H c n7t5-epseH.]2l- a mpHro nThtefeoTcv IsprrApeIueaAralga nesnaeterccninrdgrcrdeei e erntc aae5oeeettxg -pie.npHc ectTe rnotrTahoereersme2 rgas acseeiisthosnsxienaaoeprdmynrer a eicr wniestani pstalot iestrhsonov.aen r ted5u shloo-sm..yHifn nT pOe5RTgoh -u bINtH6iAhrys0AT a r%saluIe ta neussA mdxupidn plauya5tgnrnss - ei csHdssospr u sfT5teeg hia-s2cogHehticneef aT fisc.rmc it2teTr oacsc htmot gehr eppoteey oentc 5oh. rei -iarysTpdHsttpthee oTwonde[rt3I ,t ehp AgiH7rfaaeey2 ]lnnaa8 ce5nhmd-r O- doweaiHw caHn5atTnds-i sDc H I-ea7rAPrnT reodaA eg2atalguoyTncyelnz dan.sr eete5 ee5drrp-cdg a-HaebH itincpyTino Tc tr2nRore2cterThccaswee-r trpPe eahecctgCscyoet eRoeperpnmv tpo.feo autt5i rohlsen-ueraxHacdalpstaTtigsremor aeedcanynsuot asbs esnwli.y. o t er5e Ran5ex-nsgTH-pt Hudi-rTnPlwoeTa Csncatt sciohesRioo n oehnb ntna i ey7tgdn ne i huaundntel rs tywartii,nshn y ai5igngesss-

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the role of central 5-HT2C receptor binding in rat model of pancreatic regeneration using 60-70% pancreatectomy. The 5-HT and 5-HT2c receptor kinetics were studied in cerebral cortex and brain stem of sham operated, 72 h pancreatectomised and 7 days pancreatectomised rats. Scatchard analysis with [3H] mesulergine in cerebral cortex showed a significant decrease (p < 0.05) in maximal binding (B^,ax) without any change in Kd in 72 h pancreatectomised rats compared with sham. The decreased Bmax reversed to sham level by 7 days after pancreatectomy. In brain stem , Scatchard analysis showed a significant decrease (p < 0.01) in Bax with a significant increase (p < 0.01) in Kd. Competition analysis in brain stem showed a shift in affinity towards a low affinity. These parameters were reversed to sham level by 7 days after pancreatectomy. Thus the results suggest that 5-HT through the 5-HT2C receptor in the brain has a functional regulatory role in the pancreatic regeneration. (Mol Cell Biochem 272: 165-170, 2005)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adrenergic stimulation has an inyortant role in the pancreatic It-cell proliferation and insulin secretion. In the present study. we have investigaled how sympathetic system mgulales the panrrealic n I rnerui nr ht an:ilyiing I'pinephi inn 1111 ), Norepinephrinc (NE) and /1-adrenergic receptor changes in the brain as (%eli is in the I swirls. Fill and NII showed a significant decrease in the brain regions, pancreas and plasma :rt 72Ius iller partial prurcrealectonty. We observed an increase in the circulating insulin levels at 72 hrs. Scatchard analysis using I CHI propranolol showed a significant increase in the number of loth the low affinity and high affinity t-adrenergic receplors in cerebral cortex and hypothalamus of partially pancreatectornised rats during peak DNA synthesis. The affinity of the receptors decrea,ed significantly in the low and high affinity receptors of cerebral cortex and the high affinity hypothalamic receptors. In file brain stein, low affinity receptors were increased significantly during regeneration whereas there was no change in the high affinity receptors. The pancreatic ff-adrenergic receptors were also up regulated at 72 firs after partial panerealectony. In vitro studies showed that /i-adrenergic receptors are positive regulators of islet cell proliferation and insulin secretion. Thus our results suggest that the t-adrenergic receptors are functionally enhanced during pancreatic regeneration, which in turn increases pancreatic ft-cell proliferation an(hilisulin secretion in wean hug rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sympathetic stimulation inhibits insulin secretion. a2-Adrenergic receptor is known to have a regulatory role in the sympathetic function. We investigated the changes in the a2-adrenergic receptors in the brain stein and pancreatic islets using [3H]Yohimbine during pancreatic regeneration in weanling rats. Brain stem and pancreatic islets of experimental rats showed a significant decrease (p<0.001) in norepinephrine (NE) content at 72 h after partial pancreatectomy. The epinephrine (EPI) content showed a significant decrease (p<0.001) in pancreatic islets while it was not detected in brain stem at 72 h after partial pancreatectomy. Scatchard analysis of [3H]Yohimbine showed a significant decrease (p<0.05) and Kd at 72 h after partial pancreatectomy in the brain stem. In the pancreatic islets, Scatchard analysis of [3H]Yohimbine showed a signiinfiBca'nnatx decrease (p<0.001) in B,nax and Kd (p<0.05) at 72 h after partial pancreatectomy. The binding parameters reversed to near sham by 7 days after pancreatectomy both in brain stein and pancreatic islets. This shows that pancreatic insulin secretion is influenced by central nervous system inputs from the brain stem. In vitro studies with yohimbine showed that the a2-adrenergic receptors are inhibitory to islet DNA synthesis and insulin secretion. Thus our results suggest that decreased a2-adrenergic receptors during pancreatic regeneration functionally regulate insulin secretion and pancreatic 13-cell proliferation in weanling rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

purpose of this study was to investigate the role of brain al-adrenergic receptor binding in the rat model of pancreatic regeneration using 60-70% pancre:dectorny. The a, -adrenergic receptors kinetics was studied in the cerebral cor:cx and brain stem of sham operated . 72 It pan- crea(ectoinised and 7 days pancreatectomised rats. Scar chard analysis with I `I I lprazocin in cerebral cartes and brain stein showed a significant decrease (/' < 0.01). (P < 0.05) in maximal binding ( 1),,,,,) with it significant decrease (P < 0.001 ), ( P < 0.01) in the K,,in 72 It pancreatecto- raised rats compared with sham , respectively . Competition analysis in cerebral cortex and brain stem showed it shift in affinity during pancreatic regeneration . The sympathetic activity was decreased as indicated by the significantly de- increased norepinephrine level in the plasma (P < 0.001), cerebral cortex (P < 0.01) and brain stem (P < 0.001) of 72 h pancreatectomised rats compared to sham . Thus, from our results it is suggested that the central a, -adrenergic receptors have a functional role in the pancreatic regenera- Lion mediated through the sympathetic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscarinic M1 and M3 receptor changes in the brain stem during pancreatic regeneration were investigated. Brain stem acetylcholine esterase activity decreased at the time of regeneration . Sympathetic activity also decreased as indicated by the norepinephrine (NE) and epinephrine (EPI) content of adrenals and also in the plasma. Muscarinic Ml and M3 receptors showed reciprocal changes in the brain stem during regeneration. Muscairnic M1 receptor number decreased at time of regeneration without any change in the affinity. High affinity M3 receptors showed an increase in the number. The affinity did not show any change . The number of low affinity receptors decreased with decreased Kd at 72 hours after partial pancreatectomy. The Kd reversed to control value with a reversal of the number of receptors to near control value . Gene expression studies also showed a similar change in the mRNA level of Ml and M3 receptors . These alterations in the muscarinic receptors regulate sympathetic activity and maintain glucose level during pancreatic regeneration. Central muscarinic M1 and M3 receptor subtypes functional balance is suggested to regulate sympathetic and parasympathetic activity, which in turn control the islet cell proliferation and glucose homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma amino outyric acid is a major inhibitory neurotrarsr titter in the central nervous system. In the preset study sv, Have investigate(' the alteration of GABA receptor, In t he hrain stem of rats during pancreatic regeneration. Three groups of rats were used for the study: sham operated, 72 It and 7 days partially pancreatectonnsea. GABA was (juan- (ified by [H]GABA receptor iispiacement method. GABA receptor kin: 10, pat at i et•ers were studied by using the binding of F'.](iAhA as ligand to the Triton X-100 treated me,i1,;-:mes a1,J displacement with unlabelled GABA. GhRA,v receptor activity was studied by using the [` -1 h3cuculline and displacement with unlabellecV euculline. ;.\13A content significantly decreased (1' < (1.(101 ) it, 0-e brain stern during the regeneration of pancreas. 'I hl, high affinity (IAI3A receptor binding sho?:ed it sigii'f cant decrease in 131„.,\ (P < 11.01) and K,I 1).05) n 72 h and 7 days after partial pancreatee 'timv. ";:flhicuculline hin(Iing showed it signih eat, 'le ( r(, :,e in /Jn1,s and K,I (P < 0.001) in 72 h pa^.rcreaw,, mised rats when compared with sham wt--tt' as P,n and K,I reversed to near sham after 7 da,s of pancreatectomv. The results sugge,) that GAB A throur,r; ('GABA receptors in brain Atcem has a regulatory uie during active regeneration of pancreas which will have inunense clinical significance in the treatment of cliahetcs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to understand the role of acetylcholine muscarinic M1 and M3 receptors during pancreatic regeneration and insulin secretion. The work focuses on the changes in the muscarinic M1 and M3 receptors in brain and pancreas during pancreatic regeneration. The effect of these receptor subtypes on insulin secretion and pancreatic P-cell proliferation were studied in vitro using rat primary pancreatic islet culture. Muscarinic Ml and M3 receptor kinetics and gene expression studies during pancreatic regeneration and insulin secretion will help to elucidate the role of acetylcholine functional regulation of pancreatic u-cell proliferation and insulin secretion.The cholinergic system through muscarinic M1 and M3 receptors play an important role in the regulation of pancreatic (3-cell proliferation and insulin secretion . Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic system, decreased in the brain regions - hypothalamus, brain stem, corpus striatum, cerebral cortex and cerebellum during pancreatic regeneration. Pancreatic muscarinic M1 and M3 receptor activity increased during proliferation indicating that both receptors are stimulatory to (3-cell division. Acetylcholine dose dependently increase EGF induced DNA synthesis in pancreatic islets in vitro, which is inhibited by muscarinic antagonist atropine confirming the role of muscarinic receptors. Muscarinic M1 and M3 receptor antagonists also block acetycholine induced DNA synthesis suggesting the importance of these receptors in regeneration. Acetylcholine also stimulated glucose induced insulin secretion in vitro which is inhibited by muscarinic M1 and M3 receptor antagonists. The muscarinic receptors activity and their functional balance in the brain and pancreas exert a profound influence in the insulin secretion and also regeneration of pancreas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deals with the differential regulation of Dopamine content in pancreas and functional regulation of Dopamine D2 receptor in brain regions such as hypothalamus, brain stem, cerebral cortex and corpus striatum play an important role during pancreatic islets cell proliferation and insulin secretion. Though may reports are there implicating the functional interaction between DA receptor and pancreatic islets cell insulin secretion, the involvement of specific DA D2 receptors and changes in second messenger system during insulin secretion and pancreatic islets cell proliferation were not given emphasis. Down regulation of DA content in brain regions and pancreatic islets were observed during pancreatic regeneration. Up regulation of DA content in plasma and adrenals down regulated sympathetic activity in pancreas which cause an increase in insulin secretion and pancreatic islets cell proliferation during pancreatic regeneration. There was a differential regulation of DA D2 receptor in brain regions. The pancreatic islets DA D2 receptors were lip regulated during pancreatic regeneration. DA D2 receptor activation at specific concentration has accounted for increased pancreatic islets cell proliferation. In vitro experiments have proved the differential regulation of DA on insulin synthesis and pancreatic islets cell proliferation. Inhibitory effect of DA on cAMP and stimulatory effect of DA on IP3 through DA D2 receptors were observed in in vitro cell culture system. These effects are correlating with the DA, cAMP and IP3 content during pancreatic regeneration and islets cell proliferation. Up regulation of intracellular Ca2+ was also observed at 10-8 M DA, a specific concentration of DA which showed maximum increase of IP3 content in pancreatic islets through DA D2 receptor activation in in vitro culture. These in vitro data was highly correlating with the changes in DA, cAMP and IP3 content in pancreas during pancreatic regeneration and insulin secretion. Thus we conclude that there is a differential functional regulation of DA and DA D2 receptors in brain and pancreas during pancreatic regeneration. In vitro studies confirmed a concentration depend functional regulation of DA through DA D2 receptors on pancreatic islets cell proliferation and insulin secretion mediated through increased cAMP, IP3 and intracellular Ca2+ level. This will have immense clinical significance in the management in diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study demonstrate the functional alterations of the GABAA and GABAB receptors and the gene expression during the regeneration of pancreas following partial pancreatectomy. The role of these receptors in insulin secretion and pancreatic DNA synthesis using the specific agonists and antagonists also are studied in vitro. The alterations of GABAA and GABAR receptor function and gene expression in the brain stem, crebellum and hypothalamus play an important role in the sympathetic regulation of insulin secretion during pancreatic regeneration. Previous studies have given much information linking functional interaction between GABA and the peripheral nervous system. The involvement of specific receptor subtypes functional regulation during pancreatic regeneration has not given emphasis and research in this area seems to be scarce. We have observed a decreased GABA content, down regulation of GABAA receptors and an up regulation of GABAB receptors in the cerebral cortex, brain stem and hypothalamus. Real Time-PCR analysis confirmed the receptor data in the brain regions. These alterations in the GABAA and GABAB receptors of the brain are suggested to govern the regenerative response and growth regulation of the pancreas through sympathetic innervation. In addition, receptor binding studies and Real Time-PCR analysis revealed that during pancreatic regeneration GABAA receptors were down regulated and GABAB receptors were up regulated in pancreatic islets. This suggests an inhibitory role for GABAA receptors in islet cell proliferation i.e., the down regulation of this receptor facilitates proliferation. Insulin secretion study during 1 hour showed GABA has inhibited the insulin secretion in a dose dependent manner in normal and hyperglycaemic conditions. Bicuculline did not antagonize this effect. GABAA agonist, muscimol inhibited glucose stimulated insulin secretion from pancreatic islets except in the lowest concentration of 1O-9M in presence of 4mM glucose.Musclmol enhanced insulin secretion at 10-7 and 10-4M muscimol in presence of 20mM glucose- 4mM glucose represents normal and 20mM represent hyperglycaemic conditions. GABAB agonist, baclofen also inhibited glucose induced insulin secretion and enhanced at the concentration of 1O-5M at 4mM glucose and at 10-9M baclofen in presence of 20mM glucose. This shows a differential control of the GABAA and GABAB receptors over insulin release from the pancreatic islets. During 24 hours in vitro insulin secretion study it showed that low concentration of GABA has inhibited glucose stimulated insulin secretion from pancreatic islets. Muscimol, the GABAA agonist, inhibited the insulin secretion but, gave an enhanced secretion of insulin in presence of 4mM glucose at 10-7 , 10-5 and 1O-4M muscimol. But in presence of 20mM glucose muscimol significantly inhibited the insulin secretion. GABAB agonist, baclofen also inhibited glucose induced insulin secretion in presence of both 4mM and 20mM glucose. This shows the inhibitory role of GABA and its specific receptor subtypes over insulin synthesis from pancreatic bete-islets. In vitro DNA synthesis studies showed that activation of GABAA receptor by adding muscimol, a specific agonist, inhibited islet DNA synthesis. Also, the addition of baclofen, a specific agonist of GABAB receptor resulted in the stimulation of DNA synthesis.Thus the brain and pancreatic GABAA and GABAB receptor gene expression differentially regulates pancreatic insulin secretion and islet cell proliferation during pancreatic regeneration. This will have immense clinical significance in therapeutic applications in the management of Diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study was to investigate the rote of central 5-11T and 5-HT,:v receptor Lindin4o and acne expression in it 'at mo(lel of pancreatic regeneration using 60" -, pancreatcutumy. The pancreatic regeneration was evaluated by 5-HT content and 5-HT,,receptor gene expression in the cerebral cortex (CC) and brain stem MS) of Alain opcrate,t, 7 It utd 7 (.lays panereatectomised rats. 5-11T content significantly increased in the CC' (I' 1.1)11 and 13S (P 0.05) of 72 Ii p.ntcreateetomiscd rats. Sympathetic activity was decreased as indicated by the significantly decreased norcpiuephrine (NIi) and epinephrine (FTI) Icvcl (1' < 0.001 and P < 0.05) in the plasma of 72 h panereateetomised rats. 5-111 ,^, receptor density and affinity was decreased in the CC (P < 0.01) and BS (P < 0.01). These rh:)nge; correlated with a diminished 5-IITIA receptor mRNA expression in the brain region. studied. Our resuils suggest that the brain 5-11T through 5-HTin receptor has it funcuon:0 rule iii 11w pi+ncreatic regcner:ttion through the sympathetic regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of thyroid hormones in DNA synthesis and in the activity of Thymidille kinase (TK), a key regulatory enzyme of DNA synthesis was studied in proliferating hepatocytes in vivo. Liver regeneration after partial hepatectomy was used as a model for controlled cell division in rats having different thyroid status - euthyroid, hypothyroid and 3,3',5'-triiodo-L-thyronine (T))-heated hypothyroid. Partial hepatectomy caused a significant elevation of DNA synthesis (p<0.01) in all the three groups compared to their sham-operated counterparts. Hypothyroid liepatectomised animals showed significantly lower (p<0.01) level of DNA synthesis than euthyroid hepatectomised animals. A single subcutaneous close of 1'3 to hypothyroid shamoperated animals resulted in a significant increase (p<0.01) of DNA synthesis in the intact liver. 17tis was comparable to the level of DNA synthesis occurring in regenerating liver of euthyroid animals. In hypothyroid hepatectomised animals, "1'3 showed an additive effect on l)NA synthesis and this group exhibited maximum level of DNA synthesis (p<0.0I ). Studies of the kinetic parameters of TK show that the Michelis-Menten constant, (K111) of TK for thymidine was altered by the thyroid status. K11 increased significantly (p<0.01) in untreated hypothyroid animals when compared to the euthyroid rats. '13 treatment of hypothyroid animals reversed this effect and this group showed the lowest value for K111 (p<0.01). Thus our results indicate that thyroid hormones can influence DNA synthesis during liver regeneration and they may regulate the activity of enzymes such as 17rymidine kinase which are important for DNA synthesis and hence cell division.