2 resultados para Pan-African reactivation
em Cochin University of Science
Resumo:
A growth medium with Leibovitz-15 L-15.as the base, supplemented with foetal bovine serum 10% vrv., fish muscle extract 10% vrv., prawn muscle extract 10% vrv., lectin concanavalin A. 0.02 mg mly1., lipopolysaccharide 0.02 mg mly1., glucose D 0.2 mg mly1., ovary extract 0.5% vrv.and prawn haemolymph 0.5%. has been formulated with 354"10 mOsm for the development and maintenance of a cell culture system from the ovarian tissue of African catfish, Clarias gariepinus. For its subculturing, a cell dissociationrextracting solution, composed of equal portions of trypsin phosphate versene glucose TPVG. containing 0.0125% wrv.trypsin and 25% vrv.non-enzymatic cell dissociation solution 1 and 2, has also been developed with which the cell culture can be passaged 15 times after which they cease to multiply and consequently perish. The cell cultures can be maintained for 12–15 days without fluid change between the passages. This is the first report of a cell culture system from the ovarian tissues of African catfish
Resumo:
The present study led to the recognition of Natrinema sp. BTSH 10 isolated from saltern ponds, as an ideal candidate species for production of gelatinase, which was noted as a halozyme capable of showing enzyme activity in the presence of 15% NaCl. Results obtained during the course of the present study indicated potential for application of this enzyme in industrial catalysis that are performed in the presence of high concentrations of salt. The enzyme characteristics noted with this gelatinase also indicate the scope for probable applications in leather industry, meat tenderization, production of fish sauce and soy sauce. Since halophilic proteases are tolerant to organic solvents, they could be used in antifouling coating preparations used to prevent biofouling of submarine equipments. The gelatinase from haloarchaea could be considered as a probable candidate for peptide synthesis. However, further studies are warranted on this haloarcheal gelatinase particularly on structure elucidation and enzyme engineering to suit a wide range of applications. There is immense scope for developing this halozyme as an industrial enzyme once thorough biochemistry of this gelatinase is studied and a pilot scale study is conducted towards industrial production of this enzyme under fermentation is facilitated. Based on the present study it is concluded that haloarchaea Natrinema sp. that inhabit solar saltern ponds are ideal source for deriving industrially important halozymes and molecular studies on enzymes are prerequisite for their probable industrial applications. This is the first time this species of archaea is recognized as a source of gelatinase enzyme that has potential for industrial applications.