9 resultados para PLASTIC SOLIDS

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selected grades of low density polyethylene (LDPE) polystyrene (PS) were extruded in a laboratory extruder by varying the feeding rate at different revolutions per minute and temperatures. The mechanical properties of the extruded plastic sheets were determined. LDPE shows a marked variation in mechanical properties with feeding rate while PS shows a marginal change in mechanical properties with feeding rate. However, for both plastics there is a particular feeding rate in the starved region which results in maximum mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents in detail. the theoretical developments and calculations which are used for the simultaneous determination of thermal parameters, namely thermal diffusivity (a). thermal effusivity (e), thermal conductivity (K) and heat capacity (cr ) employing photopyroelectric technique. In our calculations. we have assumed that the pyroelectric detector is supported on a copper backing. so that there will be sufficient heat exchange between the heated pyroelectric detector and the backing so that the signal fluctuations are reduced to a minimum. Since the PPE signal depends on the properties of the detector that are also temperature dependent. a careful temperature calibration of the system need to be carried out. APPE cell has been fabricated for the measurements that can be used to measure the thermal properties of solid samples from ~ 90 K to ~ 350 K. The cell has been calibrated using standard samples and the accuracy of the technique is found to be of the order of± 1%.In this thesis, we have taken up work n photopyroelectric investigation of thermal parameters of ferroelectric crystals such as Glycine phosphite (NH3CH2COOH3P03), Triglycine sulfate and Thiourea as well as mixed valence perovskites samples such as Lead doped Lanthanum Manganate (Lal_xPb~Mn03) Calcium doped (Lal_xCaxMnOJ) and Nickel doped Lanthanum Stroncium Cobaltate (Lao~Sro5Ni,Col_x03).The three ferroelectric crystals are prepared by the slow evaporation technique and the mixed valence perovskites by solid state reaction technique.Mixed valence perovskites, with the general formula RI_xA~Mn03 (R = La. Nd or Pr and A = Ba, Ca, Sr or Pb) have been materials of intense experimental and theoretical studies over the past few years. These materials show . colossal magneloresis/ance' (CMR) in samples with 0.2 < x < 0.5 in such a doping region, resistivity exhibits a peak at T = T p' the metal - insulator transition temperature. The system exhibits metallic characteristics with d %T > Oabove Tp (wherep is the resistivity) and insulating characteristics with d % T < 0 above T p. Despite intensive investigations on the CMR phenomena and associated electrical properties. not much work has been done on the variation of thermal properties of these samples. We have been quite successful in finding out the nature of anomaly associated with thermal properties when the sample undergoes M-I transition.The ferroelectric crystal showing para-ferroelectric phase transitions - Glycine phosphite. Thiourea and Triglycine sulfate - are studied in detail in order to see how well the PPE technique enables one to measure the thermal parameters during phase transitions. It is seen that the phase transition gets clearly reflected in the variation of thermal parameters. The anisotropy in thermal transport along different crystallographic directions are explained in terms of the elastic anisotropy and lattice contribution to the thermal conductivity. Interesting new results have been obtained on the above samples and are presented in three different chapters of the thesis.In summary. we have carried investigations of the variations of the thermal parameters during phase transitions employing photopyroelectric technique. The results obtained on different systems are important not only in understanding the physics behind the transitions but also in establishing the potentiality of the PPE tool. The full potential of PPE technique for the investigation of optical and thermal properties of materials still remains to be taken advantage of by workers in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of mirage effect suffered by a He-Ne laser beam has been utilized to detect phase transitions in solids. It has been observed that anomalous fluctuations of large amplitude occur in the signal level near the transition temperature. The mean square value of the fluctuation is found to exhibit a well-defined peak at this point. Results of measurements made in the case of crystals of TGS ((NH2CH2COOH)3.H2SO4) and a ceramic sample (BaTiO3) are given to illustrate this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

School of Management Studies, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At this era of energy crisis and resource depletion, availability of conventional materials throughout the year in quantity and quality, pose a hectic problem for the builders. Adding fuel to the fire, the demand of these materials increases day by day, since the housing and habitat requirements exponentially increase time to time. There is an international concern over this crisis and researchers are reorienting themselves, so as to evolve appropriate masonry units, using locally available cheap materials and technology. The concept of green material and construction has been well conceived in the research so that marginal materials and unskilled labour can be employed for the mass production of building blocks. In this context, considering earth as a sustainable material, there is a growing interest in the use of it, as a modern construction material. Solid waste management is one of the current major environmental concerns in our country. Our country is left with millions of cubic metre of waste plastics. One of the methods to satisfactorily address this solid waste management and the environmental issues is to suitably accommodate the waste in some form (as fibres). Their employability in block making in the form of fibres (plastic fibre- mud blocks) can be investigated through a fundamental research. Also, the review of the existing literature shows that most studies on natural fibres are focussed on cellulose based/ vegetable fibres obtained from renewable plant resources except in very few cases, where animal fibre, plastic fibre and polystyrene fabric were used. At this context, for the plastic fibre-mud blocks to be more widely applicable, a systematic quantification of the relevant physical and mechanical properties of the fibre masonry units is crucial, to enable an objective evaluation of the composite material’s response to actual field condition. This research highlights the salient observations from the detailed investigation of a systematic study on the effect of embedded fibres, made of plastic wastes on the performance of stabilised mud blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the benefits of stabilizing the stone mastic asphalt (SMA) mixture in flexible pavement with shredded waste plastic. Conventional (without plastic) and the stabilized SMA mixtures were subjected to performance tests including Marshall Stability, tensile strength and compressive strength tests. Triaxial tests were also conducted with varying percentage bitumen by weight of mineral aggregate (6% to 8%) and by varying percentage plastic by weight of mix (6% to 12% with an increment of 1%). Plastic content of 10% by weight of bitumen is recommended for the improvement of the performance of Stone Mastic Asphalt mixtures. 10% plastic content gives an increase in the stability, split tensile strength and compressive strength of about 64%, 18% and 75% respectively compared to the conventional SMA mix. Triaxial test results show a 44% increase in cohesion and 3% decrease in angle of shearing resistance showing an increase in the shear strength. The drain down value decreases with an increase in plastic content and the value is only 0.09 % at 10% plastic content and proves to be an effective stabilizing additive in SMA mixtures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers